操逼啊口爆啊rrr中途啊免费-中文字幕av网一区二区-中文字幕久久精品波多野结百度-国产三级视频在线观看

雙極性晶體管

二極管

ESD保護(hù)、TVS、濾波和信號(hào)調(diào)節(jié)ESD保護(hù)

MOSFET

氮化鎵場(chǎng)效應(yīng)晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應(yīng)用認(rèn)證產(chǎn)品(AEC-Q100/Q101)

IAN50003 - Driving solenoids in automotive applications

There are a wide variety of solenoid drive circuit topologies, most of these use MOSFETs in various configurations . This interactive application note considers 4 driving modes.

Authors: Nandor Bodo, Andy Berry, Automotive Application Engineers, Manchester, UK

This interactive application note contains an embedded PartQuest Cloud simulation to augment the text.

To open the embedded simulation, simply hover over the simulation image. Left click anywhere in the graphic area once the central play button changes in colour from black to yellow. This opens the schematic in the PartQuest Cloud environment. See the interactive application note home page for more details on how to use the simulations. See accompanying application note: AN50003

Download AN50003

Solenoid principle of operation
Figure 1. Solenoid principle of operation

1. Introduction

Throughout the evolution of modern engineering electromagnetic devices have taken prevalence in changing electrical energy to mechanical energy or movement. Most commonly we think about motors for such applications, however the humble solenoid is used even more often, thanks to its simplicity of construction and ease of driving. Solenoid coils are typically found in relays, contactors, and valves.

In the automotive sector solenoids are used for a range of applications, from starting the engine to shifting the transmission. Solenoids are used to activate four-wheel drive system, fuel injection systems, locking the doors of the car and controlling the air flow in the vehicle's air conditioning system. The vast number of valves in the vehicle are also controlled by solenoids.

2. Solenoid operating principles

Consisting of a fixed coil and a movable core or slug (termed the armature) the solenoids are able to push, pull or even do both as the current through them changes direction. The armature is used to assert mechanical force to the driven system. The motion is usually reversed by a spring that is attached to the core. The armature movement changes the inductance of the coil, which in turn acts as an electromagnet. The magnetic force applied to the armature is proportional to the change of this inductance and the current flowing through the core, as shown in Fig. 1.

From the electrical viewpoint, the solenoid acts as an inductive component, consisting of multiple wound coils. The current flowing through them creates a magnetic field. The sluggish nature of this highly concentrated field creates a voltage (termed Electro Motive Force, EMF) that opposes change in the magnetic field, and therefore in the current as well. In this way as voltage is initially applied to the solenoid coil the current starts rising gradually. The magnetic field, and therefore the force applied to the armature rises until it reaches a point where it is large enough to move the armature in the desired direction.

Idealised Voltage and current waveforms
Figure 2. Idealised voltage and current waveforms

Because of this slow response, it is prudent to apply a high voltage to the solenoid at the start of its actuation to initiate a faster current response. As the armature starts moving, the solenoid’s inductance (as a function of the armature position) and back EMF (as a function of the armature speed) rise, limiting the rate of rise of the current.

Once the movement of the coil is mechanically prevented as it reaches its intended resting point, the back EMF diminishes. At this point the current continues to rise until only the coil resistance limits its value. This current can be quite high for the power supply, which is normally a battery in automotive applications

As the system has reached a mechanical steady state the amount of force needed to maintain this state is much lower than for moving the armature. Besides, the armature is usually part of a magnetic circuit with an air gap.

This air gap is closed by actuating the solenoid and moving the armature, therefore rendering the magnetic reluctance (equivalent for resistance in electric circuits) very small. This in turn allows the magnetic field flux (equivalent to current in electric circuits) to flow in abundance, increasing the applied force to the armature.

For the above reasons it is advisable to decrease the applied voltage to the solenoid after its armature has reached its intended position, to limit the applied power and avoid depleting the vehicle battery.

Idealised voltage and current waveforms are shown in Fig. 2.

Peak and hold current waveform
Figure 3. Peak and hold current waveform in a fuel injector application

3. Current regulated solenoid drives

A more recent approach to controlling solenoids uses current control as shown in Fig. 3.

The waveform is known as the “peak-and-hold” current waveform, predominantly used in Fuel Injection applications. Initially, the current is increased rapidly to a high value during the Boost Phase. The current can be allowed to reach high values at this stage, since it will provide the initial push for the armature to begin its journey. The slope of the current should be high and, therefore, the applied voltage should be high as well.

In the Peak Phase, for a time period sufficient for the armature to take its final position the current is held at a certain value. Then the current is reduced during the Bypass Phase. The rate of decrease of the current is dependent on the reverse voltage applied to the inductor in this phase. The current is set to a lower value during the Hold Phase. Therefore, the force applied to the armature is reduced to a level sufficient to hold the armature in place. The losses are also reduced since this current can be substantially lower than the one applied in the Peak Phase.

Finally, once the control signal is withdrawn, in the End of Injection Phase, the current is left to decay to zero, leaving the spring to return the armature to its initial position. Once again, the rate of inductor current decrease can be influenced by the voltage that appears across the inductor. At this instant, the speed of current decay might be important for timing reasons. If the current decays slowly it is hard to predict the instance when the force of the spring will prevail over the magnetic force, as the mechanical properties of the spring and the whole mechanical system of the solenoid might change over time. Furthermore, for the same reasons the speed of the armature cannot be guaranteed. For some time sensitive applications, such as internal combustion engine injector drive, such timing differences might prove to be crucial.

4. Discussion of simulation results

Four approaches to driving a current regulated solenoid are explored in simulations. The simulations had common control parts, for ease of comparison. The difference manifested in the power electronics driving the solenoid. The MOSFET driver logic relies on the current feedback being compared to its reference value. When the reference value is higher than the feedback, the MOSFET is switched at 1 kHz frequency. For the purposes of these simulations the solenoids were replaced by an inductor with 5 mH inductance.

Schematic of driver with freewheeling diode.
Figure 4. Schematic of driver with freewheeling diode

4.1. Solenoid driver with free-wheeling diode

This is the simplest and easiest way to drive a solenoid. The inductive energy of the solenoid decays through a diode up to the battery voltage. The schematic is shown on Fig. 4 and the solenoid current and its reference is shown in Fig. 5

When the reference signal is received, at 10 ms, both MOSFETs turn on to ensure maximal current increase in the Boost Phase. Once the peak reference current is reached, the high side MOSFET is switched so that it controls the current around this reference value, which is chosen to be 3 A in the simulation. When the MOSFET is turned on the applied voltage equals to the battery voltage; when the MOSFET is turned off the current circulates through the bottom MOSFET and the bottom diode. The voltage applied to the inductor is equal to the voltage drop on these two elements, i.e. it is very low.

Solenoid current waveform – free-wheeling topology
Figure 5. Solenoid current and reference waveforms –?free-wheeling?topology

After the target time of 10 ms for the Peak Phase has elapsed, at 20 ms, the reference is changed to 1.2 A. Again, the top MOSFET is used to regulate the current. After the Hold Phase, at 40 ms,both MOSFETs are turned off and the current free-wheels through the two diodes, making the effective reverse voltage almost equal to the battery voltage. Considering a simple inductor voltage/current relation, with a battery voltage of 12 V and 5 mH inductance the duration of the End of Injection phase can be calculated to be close to 0.5 ms.

(Eq 1) 

Both MOSFETs and diodes will need to withstand the battery voltage. Both MOSFETs and the top free-wheeling diode need to be rated to the reference Peak current, while the bottom free-wheeling diode conducts only the Hold current for a short amount of time. The dissipated energy was calculated for each component during the whole activation process. Comparison of the energies dissipated in each device for each topology can be found in Section 5. To obtain the power, the calculated energy value needs to be multiplied with the desired frequency of operation.

Compared to the other driver topologies, the free-wheeling driver is simple, has a low component count, but it is the slowest due to the inductor voltage being approximately equal to the battery voltage.

(Eq 2) 

4.2. Solenoid driver with MOSFET avalanching

Schematic of driver with avalanching MOSFET
Figure 6. Schematic of driver with avalanching MOSFET

In this case there is no free-wheeling diode and the back EMF of the solenoid forces the MOSFET into avalanche mode of operation. Its schematic is shown in Fig. 6.

The mode of operation is identical to the free-wheeling diode circuit at the start. However, in End of Injection Phase, when both MOSFETs are turned off, the inductor current has no way to free-wheel. Therefore, the inductor voltage is increased until it breaks down the bottom MOSFET and drives it into avalanche mode.

Avalanching inductor current and MOSFET voltage
Fig 7. Avalanching inductor current (top) and MOSFET voltage (bottom).

This voltage is substantially higher than the battery voltage that was applied in the case of the free-wheeling circuit. Therefore, the current will decay faster. A close look at the MOSFET avalanche voltage and current can be seen in Fig. 7.

Consulting the inductor equation, (Eq 1), once again, with a voltage of 68 V, the End of Injection phase duration is now closer to 0.1 ms: a five-fold reduction compared to the free-wheeling case.

Once again, all the components need to be rated above the battery voltage and the target peak current. However, the bottom MOSFET needs to be repetitive avalanche rugged. The energy dissipated in each component is compared in Section 5.

Due to the high voltage of avalanche compared to the battery voltage, this method decays and therefore releases the solenoid faster. However, the energy of the inductor is now dissipated in the MOSFET in the form of heat. Therefore, careful consideration of a MOSFET is needed to handle this energy.

4.3. Solenoid driver with active clamp

Schematic of driver with active clamp
Figure 8. Schematic of driver with active clamp

This option is very similar to avalanche operation. Here a Zener clamp is connected drain to gate of the MOSFET, as seen in Fig. 8.

Once again, the circuit behaviour is identical as with the free-wheeling and avalanche circuits.

However, at the End Of Injection Phase as both MOSFETs are turned off and the inductor voltage starts to increase towards the bottom MOSFET VDS breakdown, the Zener diode starts conducting and pulls the MOSFET gate up forcing it into its linear region.

The MOSFET then maintains the sum of the Zener diode breakdown voltage, the diode forward voltage and the gate-source threshold voltage from drain to source.

active clamp waveforms
Figure 9. MOSFET gate voltage (top), drain to source voltage (middle) and inductor current (bottom); active clamp topology

In the previous case the MOSFET intrinsic diode has broken down in avalanche mode. In this case the current flows through the MOSFET channel.

As the MOSFET is in its linear region with large current and large voltage applied to it, there is an increased chance of hotspots and thermal runaway occurring if conditions are met. During active clamp there are high energy charge carriers generated in close proximity to the MOSFET’s gate oxide. These carriers might be injected into the oxide and cause damage.

Over many active clamp cycles the oxide can wear out and cause parametric shift and ultimately device failure. Currently it is not recommended to use MOSFETs in repetitive active clamp. Alternatively, repetitive avalanche is recommended as the long term reliability during repetitive avalanche is better defined. Simulated waveforms of the circuit behaviour are shown in Fig. 9.

Schematic of driver with Boost converter
Fig 10. Schematic of driver with Boost converter

4.4. Solenoid driver with Boost converter

This is the most complicated topology, shown in Fig. 10, with the highest performance. A boost converter, often operating at an output voltage in the range of 60 V, is used to charge and discharge the solenoid quickly (five times faster with five times larger voltage) during the Boost Phase and End of Injection Phase.

During the Peak and Hold Phases the nominal battery voltage is switched, as in the previous cases. This allows for fast actuation of the solenoid, but also the energy from the solenoid is regenerated into the DC link capacitor of the boost converter.

The cost here is the additional components to make the boost circuit, the additional PCB board space and overall higher voltage rating of the components. The added component count is reflected in the losses. However, it needs to be considered that the MOSFETs used in the Boost simulation are of lower current rating.

Simulations of solenoid drives

The simulation embedded in this application note have common parts, for ease of comparison. The difference manifests in the power electronics driving the setup.

Inside the block of the MOSFET driver logic the current feedback is being compared to its reference value. When the reference value is higher than the feedback, the MOSFET is switched at 1 kHz frequency.

The current reference is of a predetermined shape and is applied to all simulations in the same manner.

Click below to enter the simulation.

5. Summary of the topologies

Table 1 shows the losses encountered in each device for each topology, as well as their total loss. The MOSFETs used in the free-wheeling and active-clamped simulations were BUK9K13-60E, in the repetitive avalanche simulation BUK9K13-60RA and in the boost converter simulations BUK9Y38-100E, as these MOSFETs need to withstand higher voltages. Although the losses appear to be higher in the Boost topology, the recuperation of the energy means that it’s efficiency is on par with the free-wheeling topology, despite using higher RDSon components.

Table 1. Energy losses comparison of surveyed topologies (mJ)
Topology Free-wheeling Avalanche Active clamp Boost
Switching MOSFET (top)

0.3

0.3 0.3 0.9
Selector MOSFET (bottom) 1 5.1 3 4
Boost MOSFET - - - 0.03
Switching diode (bottom) 15.5 15.3 15.4 15.6
Freewheeling diode (top) 0.1 - - 0.25
'OR' diode - - - 3.8
Zener diode - - 2 -
Total losses 17 20.7 20.7 26

Table 2 shows a summary of the pros and cons of the surveyed topologies. The avalanche and active clamp circuits are positioned between the low cost and low speed free-wheeling topology and the high cost and high speed boost topology. While there are risks in the longevity of the devices in the middle two topologies, Nexperia’s repetitive avalanche rugged components are extensively tested and their data sheets are equipped with the necessary data to make an informed choice and have the MOSFET last the full application lifetime.

Table 2. Performance comparison of surveyed topologies.
Topology Free-wheeling Avalanche Active clamp Boost
Cost

Low

Low Low High
Speed Low Medium Medium High
Efficiency High Low Low High
Reliability Long term Long term Questionable Long term
Avalanche current as a function of avalanche time
Figure 11. Avalanche current as a function of avalanche time

6. How to select a repetitive avalanche rugged part

Existing MOSFET data sheets give scarce data about repetitive avalanching a MOSFET. The ones that do, give a very conservative rating. Nexperia’s repetitive avalanche products provide a way to objectively assess the suitability of the chosen part for the aimed application. From Fig. 7 the avalanche voltage can be read as 68 V, the avalanche current 1.4 A and the avalanche time is 0.1 ms. The inductance is 5 mH.

Let’s consider the BUK9K35-60RA. In the device data sheet, there are two figures (Fig. 11 and Fig. 12) that can help with choosing the device. From the avalanche current it can be seen from Fig. 11 that repetitive avalanche can be allowed to last for up to 0.2 ms. Eq 3 shows the amount of energy contained in the inductor and dissipated by the MOSFET:

(Eq 3)  

This gives a value of 4.9 mJ. From Fig. 12 it can be seen that the number of cycles that can be allowed is approximately 2.5 billion.

Maximum number of avalanche events as a function of avalanche energy
Fig. 12. Maximum number of avalanche events as a function of avalanche energy

We are left only to ensure that we are within the allowable junction temperature. As for the fuel injection frequency we can take a low value of 20 - 30 Hz, the junction temperature is of low concern as the MOSFET junction will have plenty of time to cool.

As these values satisfy the application requirements with small margins, a MOSFET with slightly higher current rating is chosen for the simulations.

7. Avalanche portfolio

Nexperia’s application specific FET portfolio for Repetitive Avalanche offers an alternative between the high-performance/high-cost boost and low-performance/low-cost freewheeling diode solenoid drives. The avalanching method has been possible using planar technology, however by technology optimisation, the Repetitive Avalanche products can comfortably handle reverse currents. The devices are tested rigorously for up to 1 billion cycles to ensure reliability.

Placed within the LFPAK package the device operating point is ensured to be below 175 ℃.

For more information please visit the links below:

PartQuest embedded Cloud simulations were used in this interactive application note.

Page last updated 03 November 2023
在线日韩一区二区三区不卡| 国产精品免费视频播放不卡| MM1313亚洲精品无码久久| 日韩女优日逼视频粉嫩开包 | 啊啊草死我爽日本在线观看| 男人操女人嗷嗷叫的视频| 日本视频一区二区免费在线观看| 美国黑人大屌操白美女小逼逼| 99久视频在线观看免费| 精品中文字幕一级久久免费 | 国产日本草莓久久久久久| 欧美日韩艺术电影在线| 国产无遮挡又爽免费视频| 欧美精品午夜福利不卡| 在线免费看片国产精品| 操逼肥的一线天白虎女人 | 男女互射视频在线观看| 久久精品国产91麻豆| 久久久人妻国产精品一区| 亚洲高清中文字幕综合网| 丁香婷婷激情综合俺也去| 亚洲另类激情综合偷自拍| 欧美一区二区三区 中文字幕| 久久久久久久久久久久新| 国产成人欧美一区二区三区的| 18禁止免费网站免费观看| 毛片内射一区二区三区| 亚洲精品福利视频免费| 日韩在线国产一区二区 | 久热这里只有精品视频4| 91福利区一区二区三区| 国产人妻久久精品二区三| 色欲永久无码精品一二三区| 男人鸡巴插进女人B里的视频 | 欧美亚洲另类久久综合婷婷| 国产一级a级高清性较视频| 精品自拍视频国产免费自拍视频 | 水蜜桃在线精品视频网| 亚洲av一区一区二区三| 国产偷国产偷亚洲高清| 美女又爽又喷奶观看免费| 国产一区二区精品播放| 日韩欧美在线观看黄色| 国产又色又爽又黄的视频多人| 国产传媒第一页在线观看| 国产人碰人摸人澡人视频| 丰满人妻少妇被猛烈进入| 久久久精品欧美中文一区二区三区| 久久久国产综合av天堂| 欧洲亚洲综合一区二区三区 | 自拍日韩亚洲一区在线| 免费黄色日韩在线观看| 国产日本亚洲精品在线一二三四| 久久久国产精品1区2区| MM1313亚洲精品无码久久| 国产熟女激情视频自拍| 五月天丁香花婷婷狠狠热| 国产精品青青爽在线观看| 久久天天躁拫拫躁夜夜AV| 欧美日韩精品成人影院| 日韩一区二区三区免费观看的人 | 男生把坤巴放进女生屁屁| 国产日韩欧美亚洲专区| 91青青草原免费观看| 亚洲日本一线产区二线区 | 欧洲老太太肛交内射视频| 亚洲最大色大成人av| 大鸡巴操女生视频男上女下式黑人| 日本高清一区二区三区高清视频| 91综合精品国产九色| 蜜臀在线观看免费视频| 国产在线观看码高清视频| 97精品在线全国免费视频| 日本一区二区高清视频在线观看| 国产自产拍午夜免费视频| 国产免费一区二区三区最新6 | 黄色一级精品久久久九九| 在线观看永久免费黄色| 成人免费淫片在线观看免费| MM1313亚洲精品无码久久| 天天操亚洲精品日韩欧美| 亚洲欧美另类丝袜在线| 国产精品人成在线播放| 亚洲一区二区精品免费观看| 中文字幕av无码不卡二区| 国产精品九色蝌蚪自拍| 亚洲精品一二三区不卡| 国产视频三区二区在线观看| 伊人久久大香线蕉亚洲av| 免费黄色国产精品日更| 日本人妻在线播放一区| 美国女人大兵的大鸡巴操男人的逼| 成人经典视频免费在线| 香蕉av秘 一区二区三区| 亚洲AV元码天堂一区二区三区| 国产蜜臀av在线一区在线| 色综合久久久久久久粉嫩| 日韩欧美人妻之中文字幕| 国产精品无码久久综合网| 大白屁股精品视频国产| 日本人妻免费在线观看| 撕开奶罩揉吮奶头大尺度视频| 国语成人高清在线观看| 午夜天堂精品一区二区| 欧美亚洲另类久久综合婷婷| 91嫩草国产在线无码观看| 男的鸡插进女的逼免费视频| 黄色三级电影在线入口| 午夜激情毛片在线观看| 美女被鸡巴插入喉咙视频在线| 久久热福利视频就在这里| 成人深夜在线观看免费视频| 香蕉久久精品日日躁夜夜躁| 日韩一区二区在线精品| 性夜国产夜春夜夜爽三级| 久久精品国产亚洲av影片 | 黑人巨大精品欧美完整版| 亚洲一区二区二区久久成人婷婷| 男生使劲操女生下面视频国产| 国产免费内射又粗又爽密桃视频 | 日韩女优日逼视频粉嫩开包| 国产综合亚洲欧美日韩在线| 精品色欲久久久青青青人人爽| 国内老熟妇精品露脸视频| 日韩亚洲人妻一区二区 | 国产精品午夜福利在线观看| 伊人久久大香线蕉亚洲av| 看免费国外大鸡巴操小骚逼| 97国产精品97久久| 成人国产激情自拍视频 | 久久久人妻国产精品一区 | 国产白嫩无套视频在线播放蜜桃| 中文字幕av无码不卡二区| 国产精品不卡一区二区久久 | 91福利国产在线人成观看| 美日韩精品一区三区二区| 久久免费偷拍视频看看| 亚洲欧美日韩一区二区三区情侣| 重磅泄露操鸡吧美女视频| 成人午夜福利视频网址| 夫妻性生活一级黄色大片| 97精品伊人久久大香| 高清一区二区中文字幕| 美女扒开大腿让人桶免费看| av电影日韩在线播放一区二区三区 | 色综合天天综合网天天| 91精品国自产拍老熟女露脸| 久久久久久无码精品大片| 中文亚洲精品在线观看| 撕开奶罩揉吮奶头大尺度视频| 国产视频一区二区三区免费看| 大香蕉在线大香蕉在线大香蕉在线 | 伊人成人在线高清视频| 精品国产av一区二区三区蜜臀 | 日韩AV无码免费看久久久| 草骚逼美穴骚逼美穴骚逼美穴骚逼| 久久精品国产亚洲夜色av| 久久66热re国产毛片基地| 日逼大阴户听书性爱刺激| 久久久久久一区二区三区四区别墅| 国产午夜福利在线观看红色一片天| 欧美日韩亚洲重口另类| 超性感美女被狂日高潮免費視頻| 九九在线精品亚洲国产涩爱| 美女无套内射粉嫩99内射 | 日本一道本日韩精品欧美| 9久精品久久综合久久超碰1| 白色紧身裤无码系列在线| 成人午夜福利视频网址| 国产一卡在线免费观看| 欧美日韩国产一二三四区永久在线| 亚洲最大色视频在线观看| 午夜天堂精品一区二区| 国产免费观看黄av片试看| 久久精品中文字幕一二三| 自拍偷拍欧美日韩高清不卡| 韩国三级一区二区三区| 粉嫩女大学生自慰喷水白虎小穴| 视频一区视频二区同事| 日韩AV在线一区二区三区合集 | 嗯啊不要用力操逼视频cable| 成人经典视频免费在线| 黄色视频在线观看破处女| 亚洲日本一线产区二线区| 色吊丝最新永久免费观看| 欧美激情视频一区 二区| 四虎永久在线精品视频免费观看| 国内老熟妇精品露脸视频| 哺乳一区二区久久久免费| 成年免费大片观看在线| 男人下面插入女生下面啊啊啊视频| 一级做a爰片久久毛片毛片 | 中文字幕亚洲欧美日韩在线不卡| 国产一区二区四区在线观看视频| 在线蜜臀av中文字幕| 绿奴舔屁眼哦哦哦操我啊哦哦哦| 国产黄色污一区二区三区| 搜索黑人性欧美大战久久| 伊人成人在线高清视频| 久久婷婷好好热日本手机| 尹人大香蕉在线精品视频| 久久午夜无码鲁丝片午夜精品 | 欧美日韩免费r在线视频| 国产精品九色蝌蚪自拍| 国产夫妻自拍刺激视频在线播放 | 国产精品一区二区三区欧美| 国产传媒小视频在线观看| 男女互射视频在线观看| 日韩AV在线一区二区三区合集| 日本大黄毛逼自拍视频| 久久综合九色综合本道| 国产在线观看码高清视频| 欧美久久国产精品性夜春夜夜爽 | 亚洲日本国产乱码va在线观看| 亚洲综合色一区二区三区蜜臀| 国产黄片一级二级三级| 国产福利精品蜜臀91啪| 国产天堂av在线免费观看| 午夜天堂精品一区二区| 一起草视频网站在线播放| 88v中文字幕熟女人妻一区| 亚洲国产免费一区二区| 在线观看欧美激情第一页| 国产精品久久久久婷婷五月| 少妇又白又紧又爽免费视频| 九九久久精品视频免费观看| 国产亚洲精品免费专线视频 | 视频在线观看免费高清自拍| 欧美一级久久久一区二区| 亚洲成人av免费在线看| 亚洲人人妻人人爽av| 性刺激特黄毛片免费视频| 美女高潮潮喷冒白浆免费视频| 中文字幕一区二区三区乱码人妻| AV色欲无码人妻中文字幕| 国产成人精品无人区一区| 国产日本草莓久久久久久| 国产中文字幕日韩精品| 国产精品久久av麻豆| 亚洲AV永久无码精品蜜芽| 五月天丁香婷婷一区二区| 可以在线观看的黄色av| 久久精品av免费观看| 一区二区三区人妻在线| 97精品国产自产在线观看永久| 亚洲日本一线产区二线区| 国产一区二区三区三洲| av亚洲中文字幕精品| 亚洲熟妇熟女久久精品一区| 国产日韩在线一二三区| 日本人体精品一区二区三区视频| 亚洲综合国产伊人五月婷| 大屌骚逼射精发情少妇鸡巴 | av精彩天堂在线观看| 亚洲熟女国产午夜精品| 日本一道本日韩精品欧美| 无遮挡18禁啪啪羞羞漫画| 日本视频一区二区免费在线观看| 重磅泄露操鸡吧美女视频| 隔壁人妻欲求不满中文字幕| 色综合人妻中文字幕精品系列| 国产蜜臀大码av影院| 国产高清无码在线一区二区| 精品日韩一区二区三区| 日本在线不卡v2区| 最新推荐久久伊人久久久| 99久久婷婷国产综合精品免费| 在线视频自拍日韩精品一区| 国内精品久久人妻白浆| 美女国产黄色三级片在线播放| 久久精品亚洲国产日韩| 深夜福利av在线播放| 国产在线播放精品一区| 精品自拍视频国产免费自拍视频| 国产精品午夜久久久久久久久| 伊人天堂午夜精品草草网| 日本人体精品一区二区三区视频| 91性高久久久久久久久久久| 综合激情五月三开心五月| 大学生高潮无套内谢免费视频| 免费黄色国产精品日更| 日本视频一区二区免费在线观看| 强插少妇视频一区二区三区| 亚洲av不卡一区二区不卡| 男人把女人捅到爽爆免费视频| 亚洲日本精品熟女视频| 97精品久久九九中文字幕| 曰本精品人妻久久久久久| 国产一级a级高清性较视频 | 国产在线视频一区二区不卡| 在线播放日本国产精品| av精彩天堂在线观看| 国产在线视频一区二区不卡| 精品一区二区三区毛片无码18| 亚洲精品偷拍自综合网| 美女扒开屁股让男人桶大奶子骚逼| 青青草青青草在线观看视频| 国产又黄又爽又粗的视频在线观看 | 野花视频在线观看免费高清版 | 国产免费人成视频尤物| 国产成人久久精品麻豆一区| 日韩午夜三级一区二区| 久久免费视频久久免费视频99| 米奇8888在线精品视频| 久草福利资源在线播放| 久久久久久一区二区三区四区别墅| 国产精品亚洲综合第一区| 日韩 有码 中文字幕 在线| 性生活在线免费观看小视频 | 久久午夜av一区二区| 亚洲天堂av在线观看免费| 久久久成人亚洲精品无码| 亚洲精品精品日本日本| 国产日韩欧美第一区二区| 骑乘少妇喷水高潮69av| 男生鸡巴操女生逼逼视频。| 无码人妻精品丰满熟妇区| 日本黄大片538视频| 欧美日韩中文精品在线| 色眯眯日本道色综合久久| 久久国产精品免费看小草| 男人捅开女人的逼国语对白| 精品人妻伦九区久久69| 欧洲的大长鸡巴操日本小浪逼| 91福利国产在线观看香蕉| 国产精品久久久久久精三级| 男女互射视频在线观看| 又大又长又黄又粗又爽的视频| 久久免费视频久久免费视频99 | 夜夜嗨天堂精品一区二区 | 两根肉棒操的好爽的视频| 亚洲黄色成人av在线电影| 爽爽午夜福利视频一区二区| 亚洲人尤物视频在线观看| 日本高清一区二区欧美| 一卡二卡精品在线免费| 久久久久久一区二区三区四区别墅 | 高颜值午夜福利在线观看| 水蜜桃美女对机机小骚逼| 亚洲成人自拍在线视频| 黑人巨屌女人操逼视频网| 中文字幕乱码十国产乱码| 欧美成人高清视频性生活| 精品国产美女福到在线不卡| 美艳人妻办公室抽搐呻吟| 啊用力快点我高潮了视频| 国产精品久久久久久精三级| 丰满人妻少妇被猛烈进入| 男人添嫩p视频在线观看| 又粗又长鸡巴插进极品美女逼逼里| 日韩美女一区二区三区在线观看| 美女裸身被操视频免费观看| 伊人久久大香线蕉亚洲av| 美女扒开大腿让男生捅高潮的视频| 免费成人在线不卡视频| 鸡鸡插进骚逼视频欧美996| 看操小日本女人乱伦逼视频| 成人性生活视频在线观看| 国产精品无码久久综合网| 蜜臀视频免费国产在线视频| 日本在线不卡v2区| 五月婷婷六月丁香俺也去| 骚货操死你捅死你骚逼视频| 中文字幕婷婷丁香色五月| 污污污视频在线观看免费视频| 四虎精品视频永久免费| 国产日韩欧美另类专区| 成年人午夜黄片视频资源| 国产成人无码区免费AV片蜜臀| 天天操操夜夜操97| 久久人妻久久人妻涩爱| 99精品视频看国产啪视频新| 黄色国产精品视频入口| 日韩天堂视频在线播放| 啊啊啊啊啊啊啊啊操我啊啊啊免费 | 日韩色视频一区二区三区亚洲| 色综合久久久久久久激情| 一区二区三区最新中文字幕| 国产诱惑站着操性感美女小穴视频| 正在播放干熟妇久久精品视频一本 | 男人的天堂社区东京热| 少妇又白又紧又爽免费视频| 欧美人妻精品一区二区三区99| 国产午夜福利在线观看红色一片天| 18禁止免费网站免费观看| 香蕉av秘 一区二区三区| 国产精品久久久久精品三级下载| 国产精品欧美国产精品| 一区二区不卡国产精品| 啊啊啊啊啊啊啊啊操我啊啊啊免费| 亚洲精品精品日本日本| 亚洲中文在线视频观看| 色偷偷的亚洲男人的天堂| 激情伊人五月天久久综合| 中国一级毛片免费看视频 | 国产一卡在线免费观看| 在线视频自拍日韩精品一区| 亚洲高清在线精品一区二区| 欧美精品在欧美一区二区三区| 九九热最新免费在线观看| 66mio人妻精品一区二区三区| 131美女爱做视频高清在线| 久久久久精品产亚洲av| 国产成+人+亚洲+综合| 天天摸天天做天天爽婷婷| 国产人碰人摸人澡人视频| 大白屁股精品视频国产| 午夜亚洲理论片在线观看| 欧洲中文字幕日韩精品成人| 日韩精品一区二区三区视频网| 亚洲和欧美一区二区三区| 一区二区不卡国产精品| 欧美日韩国产一二三四区永久在线| 欧美一级久久精品费色a| 国产一区二区三区尤物视频| 99国产欧美久久久精品蜜桃| 欧美激情日韩精品久久久| 97精品日韩欧美一区二区三区| 亚洲AV无码一区二区三区动漫| 中文人妻av一区二区| 欧美91精品国产自产在线| 日韩的一区二区区别是什么| 国产美女91精品在线观看| 免费在线观看国产不卡| 国产午夜精品一区二区三区视频 | 国产一区二区三区尤物视频| 91久久国产精品91久久性色| 色眯眯日本道色综合久久| 久久久精品欧美中文一区二区三区| 九九热视频大全精品免费| 四虎永久在线精品视频免费观看| 国产黄色性生活一级片| 午夜免费福利视频一区| 美日韩成人av免费久久| 三级网站一区二区三区| 啊用力快点我高潮了视频| 亚洲国产精品毛片av在线下载| 久久精品日本一区三区| 太大太粗好爽受不了视频 | 欧洲亚洲综合一区二区三区| 久久久精品国产精品久久| 精品久久久久久久大| 国产肥熟女老太老妇A片| 男女互射视频在线观看| 午夜免费福利视频一区| 色噜噜狠狠狠综合曰曰曰 | 性夜国产夜春夜夜爽三级| 奇米777狠狠色噜噜狠狠狠| 国产精品视频每日更新国产清纯| 中文字幕中文字幕乱码| 国产成人精品自产拍在线观看| 黄色段片一区二区三区| 午夜av成人在线观看| 痴女av一区二区三区| 欧美成人综合在线观看视频| 丁香花在线视频观看免费| 91国产自拍在线一区| 亚洲一区精品二人人爽久久| 国产又黄又爽又粗的视频在线观看| 久久这里只有偷拍精品视频| 91午夜精品福利在线亚洲| 国产女人av一级一区二区三区 | 我要看外国女生操逼逼的视频| 久青草视频在线免费观看| 蜜桃免费视频在这里看| 中文字幕有码人妻在线| 亚洲一区二区三区网址| 久久久久久久久久久久新| 日本精品福利在线视频| 日韩美女一区二区三区在线观看| 成人经典视频免费在线| 亚洲综合色成人影院| 大鸡巴操白丝校花清纯小骚逼视频| 骑乘少妇喷水高潮69av| 在线观看男人鸡桶女人的| 成人一区二区三区在线观看| 中文字幕乱码一区久久麻豆蜜芽 | 中文字幕人妻熟女人妻av| 欧美A极v片亚洲A极v片| 91精品极品在线免费观看| 免费国产高清在线观看最新| 国产农村av对白观看| 鸡鸡插进骚逼视频欧美996| 精品国产福利盛宴在线观看| 神马午夜伦理精品亚洲| 亚洲成人自拍在线视频| 久久久国产综合av天堂| 久久精品国产91麻豆| 国产午夜福利导航在线| 美女张开腿让男人桶到爽裸体| 国产精品成人av高清在线观看| 91久久国产精品91久久性色| 免费日韩av网在线观看| 一区二区不卡国产精品| 99久久无色码亚洲字幕| 成人性爱大阴茎视频高甜| 国产大陆日韩一区二区三区| 夫妻性生活一级黄色大片| 天天综合天天添夜夜添狠狠添| 少妇厨房愉情理伦片视频在线观看| 强奷漂亮的护士中文字幕| 一区二区三区欧美影片| 国产精品久久久久久妇女免费| 哺乳一区二区久久久免费| 久久精品国产99久久6动漫欧| 日本女中年在工作隐私小鸡巴操逼 | 少妇高潮喷水久久久久久久久久 | 亚洲少妇插进去综合网| 亚洲国产欧美日韩各类| 懂色av噜噜一区二区| 91成人精品国产免费男男| 人妻久久久一区二区三区视频| 亚洲男人天堂在线免费| 撕开奶罩揉吮奶头大尺度视频| 男人用力插美女下面的视频 | 国产片高潮抽搐喷水免费| 大鸡巴插进小骚逼漫画羞羞漫画 | 美女主播视频福利一区二区 | 亚洲av日韩av高清在线播放| 国产中文字幕有码视频| 国产热女视频一区二区三区| 免费无码va一区二区三| 久久免费视频久久免费视频99| 大鸡巴插进小穴的视频吴梦梦| 国产人妖免费在线观看| 太大太粗好爽受不了视频 | 快插我的逼逼里好爽的免费视频| 日韩欧美黄片在线播放| 男人下面插入女生下面啊啊啊视频 | 国产传媒第一页在线观看| 深夜美女高潮喷白浆视频| 边吃奶边摸下我好爽免费视频| 久久天天躁拫拫躁夜夜AV| 人妻久久久一区二区三区视频| 人妻少妇精品视频中文字幕免费| 日韩精品av在线观看| 蜜桃99视频在线观看| 国产精品毛片高清在线完整版| 亚洲日本精品熟女视频| 爽爽午夜福利视频一区二区| 超碰98人人插完整版在线观看| 99国产精品国产自在现线| 情色中文字幕在线观看| 欧美午夜精品福利在线观看| 亚洲AV无码一区二区三区动漫 | 自拍日韩亚洲一区在线| 一级做a爰片久久毛片毛片| 欧美性生活欧美性生活| 亚洲一区二区三区精品久久av| 成人日韩精品在线观看| 亚洲一级特黄大片婷婷| 国产在线视频一区二区不卡| 亚洲精品黄网在线观看| 国产精品欧美国产精品| 波兰中年妇女B操B视频| 国产精品免费网站免费看| 无码国内精品人妻少妇蜜桃视频| 国产亚洲一区二区三区精品久久| 男生大肉捧插女生的视频| 男人大鸡巴插进美女逼里视频强奸 | 骑乘少妇喷水高潮69av| 九九最新视频免费观看九九视频| 99热这里全部都是精品| 国产黄片久久免费观看 | 无码人妻精品丰满熟妇区| 国内精品国产成人国产三级| 日韩精品女性三级视频| 国产熟女激情视频自拍| 午夜av成人在线观看| 国产精品成人av高清在线观看| 欧美精品国产成人综合亚洲| 人妻熟女一区二区三区在线| 丁香花在线视频观看免费| 一级做a爰片久久毛片毛片| 国产精品久久久精品免费| av在线中文字幕乱码| 超大鸡巴操处女小骚逼免费视频| 国产综合永久精品日韩| 日韩一区二区三区影片| 国产传媒天美av一区二区三区| 日韩午夜三级一区二区| 日本视频一区二区三区观看 | 午夜伦理激情福利视频| 国产女人av一级一区二区三区| 午夜视频免费在线观看免费| 国产最新视频一区二区三区| 国产亚洲中文一区二区| 日韩的一区二区区别是什么| 青春无码三级视频在线播放 | 91中文字幕一区二区| 国产乱码精品一区二区三区麻一豆| 大鸡巴操大人体逼的视频| 国产无遮挡又黄又爽又大| 韩国成人台湾天堂在线| 91精品极品在线免费观看| 亚洲国产欧洲综合997| 亚洲欧洲av午夜精品| 玖玖热在线视频免费观看| 日韩精品一区二区三区视频网 | 中文字幕在线av电影| 日韩亚洲一区二区三区中文字幕| 18禁看一区二区三区| 18以上岁毛片在线播放| 97视频精品免费观看| 欧美一级久久精品费色a| 精品中文字幕一级久久免费 | 国产一区二区三区尤物视频| 国产精品无码无不卡在线观看| 亚洲熟妇v一区二区三区色堂| 国产精品午夜免费福利| 亚洲av永久无码青青草原| 亚洲日本乱码一区二区| 亚洲国产精品成人综合片| 成人深夜在线观看免费视频| 欧美日韩欧美性生活视频| 精品国产尤物黑料在线观看 | 国产美女极度色诱视频| 欧美超碰人人爽人人做人人添| 国际b站免费直播入口MBA智库| 自拍日韩亚洲一区在线| 亚洲精品美女在线观看播放| 亚洲高清中文字幕综合网| 亚洲国产精品成人综合片| 99热这里只有是精品7| 18以上岁毛片在线播放| 国产富婆高潮一区二区| 黄色视频一边摸上面一边插下面| 国产精品免费视频播放不卡| 国产在线观看码高清视频| 美女张开腿让男人桶到爽裸体| 夫妻性生活一级黄色大片| 色欲av一区二区三区精品| 美国黑人大屌操白美女小逼逼| 欧美逼逼一区二区三区| 午夜福利片国产精品张柏芝| 一区二区三区毛片国产一区| 最近中文字幕国产精品| 日本视频一区二区三区观看| 在线播放国产精品口爆| 亚洲国产精品成人综合片| 久久这里只要精品视频| 色久悠悠在线观看视频| 把体操服美女摁在桌上操| 国产精品为爱搞点激情| 给我播放免费在线视频| 欧美美女真人全裸外阴大阴口日逼 | 欧洲中文字幕日韩精品成人| 日韩亚洲在线观看视频| 自拍偷在线精品自拍偷蜜臀| 97精品在线全国免费视频| 在线观看亚洲欧洲精品 | 青青河边草视频在线观看| 国产三级在线观看官网| 久久香蕉国产线看观看6| 97国产精品97久久| 一区二区不卡国产精品| 一区二区三区亚洲免费看| 久久久国产精品1区2区| 欧美一级久久久久久国产| 日韩欧美亚洲精品成人| 午夜99精品一区二区三区| 亚洲欧美日韩偷拍丝袜| 少妇厨房愉情理伦片视频在线观看| 一区二区三区人妻在线| 国产又黄又爽又粗的视频在线观看| 久久久久久久久极品99| 丰满少妇被粗大猛烈进人高清| 丝袜美腿福利一区二区| 成年女人喷潮毛片免费播放| 亚洲狠狠丁香综合一区| 日韩 有码 中文字幕 在线| 久久久久亚洲av成人网热| 成人久久av一区二区| 欧美久久国产精品性夜春夜夜爽| 夜夜躁日日躁狠狠久久av乐播| 久久a天堂av福利免费播放 | 大鸡巴插入少妇骚穴视频| 日韩欧美一级精品久久| 日韩亚洲一区二区三区中文字幕| 日本熟妇的诱惑中文字幕 | 国产精品青青爽在线观看| 99久久精品99久久精品视频 | 一区二区三区亚洲精品| 国产日本亚洲精品在线一二三四| 日韩av中有文字幕在线观看| 麻豆成人久久精品二区三区红| 老女人黄色性生活高清版| 精彩视频尤物视频在线| 深夜视频在线观看你懂的| 一区二区三区人妻在线| 国产日韩欧美第一区二区| 伊人久久综合大杳蕉中文无码| 精品人妻一区二区三区mp4| 97精品视频在线观看| 日本大黄毛逼自拍视频| 久久免费视频久久免费视频99| 亚洲熟女国产午夜精品| 久久精品亚洲国产日韩| 91麻豆国产自产在线观看亚洲| 哺乳一区二区久久久免费| 国产在线小视频免费观看| 亚洲精品九一国产九九蜜桃| 国产精品熟女自拍视频| 国产欧美日韩综合精品二区| 成人国产激情自拍视频| 日韩av不卡在线播放| 中文人妻熟妇精品乱又伧老牛在线| 男女男精品视频免费体验| 国产传媒小视频在线观看| 九九最新视频免费观看九九视频| 国产成+人+亚洲+综合| 五月婷婷六月丁香激情综合网| 久久久精品国产精品久久| 91免费精品国产拍在线| 中文字幕日韩精品免费看| 国产精品久久久精品免费| 综合成人欧美网日韩青椒网| 大白屁股精品视频国产| 色偷偷的亚洲男人的天堂| 91精品麻豆日日躁夜夜躁| 欧美日韩亚洲人妻在线| 91综合在线国产精品| 国产免费av片在线观看| 欧美人妻少妇精品久久| 精品人妻伦九区久久69| 大鸡巴操美女骚逼嫩穴视频| 日韩天堂视频在线播放| 夜夜躁日日躁狠狠久久av乐播| 少妇厨房愉情理伦片视频在线观看 | 国产精品亚洲欧美久久| 欧美超碰人人爽人人做人人添| 日韩av不卡在线播放| 日本漂亮丰满中国人免费看| 人妖系列中文字幕欧美系列| av黄频在线观看免费| 91精品麻豆日日躁夜夜躁| 嗯啊好爽用力啊视频在线观看| 国产精品成人自拍视频| 情产国品久久久久久久9999| 青青国国产视在线播放观看91| 不卡av免费在线网址| 大鸡巴操大人体逼的视频| 国内老熟妇精品露脸视频| 又粗又长鸡巴插进极品美女逼逼里| 国产精品日韩中文字幕| 精品人妻伦九区久久69| 国产内射一级一片高清视频蘑菇| 综合亚洲欧美一区二区三区| 十八禁网站免费在线观看| 久久精品国产亚洲av护士长| 国产内射一级一片高清视频蘑菇 | 久久久久久久久久久久性高潮| 波多野结衣在线观看一区二区三区| 蜜臀av国内精品久久久久久久久| 久久久久久曰本av免费免费看| 亚洲av人片乱码色午夜| 在线观看中文字幕二区| 久久99精品久久久久久手机免费 | 午夜激情视频福利在线观看| 国产无遮挡又爽免费视频| 成人性爱大阴茎视频高甜| 欧美一级久久久一区二区| 久久精品av免费观看| 日韩天堂视频在线播放|