操逼啊口爆啊rrr中途啊免费-中文字幕av网一区二区-中文字幕久久精品波多野结百度-国产三级视频在线观看

雙極性晶體管

二極管

ESD保護(hù)、TVS、濾波和信號調(diào)節(jié)ESD保護(hù)

MOSFET

氮化鎵場效應(yīng)晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應(yīng)用認(rèn)證產(chǎn)品(AEC-Q100/Q101)

IAN50004 - Using power MOSFETs in DC motor control applications

This interactive application note aims to give some general insights into how to drive a DC motor using Nexperia Power MOSFET devices.

Authors: Andrei Velcescu and Christian Radici; Application Engineers, Manchester

This interactive application note contains embedded Cloud based simulations to augment the text.

To open the embedded simulation, simply hover over the simulation image. Left click anywhere in the graphic area once the central play button changes in colour. This opens the schematic in the Cloud environment. See the interactive application note tutorial page for more details on how to use the simulations. See accompanying application note: AN50004.

Download AN50004

1. Introduction

Within the automotive environment, Brushed Direct Current (DC) motors play an important role in the control of many applications within the car such as mirror folding control, window lifter, seat control, sunroof and power tailgate control, as well as oil, fuel and water pumps.

Figure 1. DC motor automotive applications

This interactive application note includes simulations of DC motor control and details the modeling of the motor used in the simulations.

2. Relay replacement in a power-folding mirror assembly

In modern automotive applications, an average of about 30 relays are used in a car. Driving a relay is simple, and the internal resistance of the connection can be very low. However, compared with relays, MOSFETs have obvious advantages in noise, service life, miniaturization and reliability. Therefore more and more manufacturers consider using MOSFETs to replace relays.

Figure 2. Relays replaced with MOSFETs

Fig. 2 a) is a motor scheme that mainly uses relays for motor drive. The direction of the motor rotation is selected by the contact of the relay. However, the relay cannot control the current of the motor, so it still needs to be connected to a MOSFET to control the current, so as to meet the functional requirements of anti-pinch.

Fig. 2 b) is a scheme that directly uses MOSFETs to drive the motor. The direction of motor rotation can be controlled using only one MOSFET, while the other MOSFET can be switched by PWM to control the motor current.

A Nexperia demo application which showcases how MOSFETs may replace relays may be seen in Fig. 3. These were used in controlling the mirror power-folding mechanism using 12 V or 24 V H- bridge DC motor control. As can be seen, the relays were replaced with MOSFETs in the LFPAK33, LFPAK56D and LFPAK56 small SMD packages.

Figure 3. Relay replacement demo board

By using any of the power MOSFET variants, there will a space reduction of up to 1:100 in terms of volume, 1:10 in terms of board area and 1:20 in terms of weight. This is depicted by the orange highlighted area in Fig. 3 versus the yellow highlighted area. In terms of performance, the LFPAK MOSFETs will offer high current handling for locked rotor protection, high reliability and full Automotive Qualification AEC-Q101. Lastly, the copper clip within the LFPAK MOSFETs offers a good thermal performance.

 Motor armature equivalent circuit
Figure 4. Motor armature equivalent circuit

3. Brushed Direct Current motor modelling

The DC motor is a common actuator in the automotive environment and in order to understand how to better choose the MOSFETs controlling it and their ratings as well as obtain the wanted behaviour from the motor, it was modelled as shown in Fig. 4. Moreover, as it will be seen later, the motor characterisation was conducted in order to have a representative example.

Click below to enter the simulation.

Simulation 1.

In simulation 1, a DC motor is connected to a DC voltage source of 5 V. This shows that the rotational speed of this particular motor is 103.2 rad/s. Considering the inner structure of the DC motor one can consider its armature circuit, (as can be seen in Fig.4). This contains its electric resistance (Ra), inductance (La) as well as back EMF (e). Moreover, the rotor mechanical constants are also shown as: motor torque (T), rotor angle (θ) and rotor inertia (J). Taking these into consideration and applying some circuit analysis techniques such as Kirchhoff’s voltage law, gives Eq. 1 below:

(Eq 1) 

In this case is the input voltage to the DC motor and the one supplied by the H-bridge which is formed by 4 MOSFETs within 2 half-bridges in order to obtain bi-directional control.

Considering the magnetic field as constant, the torque produced by the DC motor will thus be proportional to the armature current and the motor torque constant KT. This may be seen in Eq. 2 below:

(Eq 2) 

 

Moreover, the back EMF is proportional to the rotor velocity /dt and the back EMF constant K , as shown in Eq. 3 below:

(Eq 3) 

As it is considered that the torque and back EMF constants are equal, the following equality may be given: KT = Ke = K.

Based on the above equations the motor output torque and speed may be approximated by knowing the motor constants. This may be found using the motor data sheet or by measurement. More information about how some of the constants were determined for an example DC motor will be given later.

4. H-bridge theory

The H-bridge, also known as full-bridge, is an electronic system consisting of four switches and capable of creating a bidirectional current and reversible voltage across its load. This function comes in handy when driving a motor because it allows to change the direction of its rotation and, if the application allows it, even to use it as a generator. This circuit is used in many systems such as in inverters (DC/AC), regulators (DC/DC) and class-D amplifiers.

The H-bridge can be thought of as composed of two half-bridges used simultaneously. The half-bridge is capable of bi-directional current but not reversible voltage and therefore, it is mainly used in motor drive applications with single direction motors such as oil pump motors and small fans.

4.1. Modes of switching

The easiest and most popular way to drive a DC motor using a H-bridge is by using pulse width modulation (PWM). Here the MOSFETs are switched at a constant frequency with a control signal having variable duty cycle. This allows the average voltage across the motor to vary and thus control the rotor angular velocity. The MOSFETs in a H-bridge can be switched in different sequences to provide the desired voltage polarity. There are two common modes: bipolar and unipolar.

Figure 5. Bipolar drive H-bridge switching

The bipolar drive allows two MOSFETs to be switched ON at a time. For example for positive current (from node A to node B) both Q2 and Q3 are turned ON. Whereas, for negative current, Q1 and Q4 are turned ON. The direction of the current is chosen by activating one or the other couple of FETs while applying a voltage across the motor that varies between VDC and -VDC, with an average value that depends on the duty cycle (δ), see Fig. 5.

A time delay, known as dead-time, must be set between the turning OFF of one pair and the turning ON of the other pair, in order to avoid cross-conduction (or shoot through), that is shorting the supply.

Due to the magnetic field build up in the motor, during the delay phase some current will continue to flow, even though all the devices are turned OFF, by recirculating through the MOSFETs body diodes.

Figure 6. Unipolar drive H-bridge switching

The unipolar drive scheme, instead, allows for the current to be regulated by keeping ON one right side MOSFET (Q2 or Q4) while switching only one left side MOSFET(Q3 or Q1). In its simplest form it allows for the elimination of the dead time which reduces the complexity of the driver circuit. For the same reason described in the bipolar drive some current will be forced to flow through one of the MOSFETs body diode when the switching MOSFET is turned OFF, see Fig. 6.

If we assume Q3 switching and Q2 turned ON, then when the former is switched OFF the current will flow through Q1 body diode. In order to decrease the loss caused by the diode voltage drop, Q1 can be switched ON while Q3 is OFF. In this case a proper dead-time constraint must be respected.

One of the major difference with the bipolar drive scheme is the fact that the voltage across the motor will have an amplitude of only VDC. As a consequence the peak of the ripple current through the motor ends up being half of the one found for the bipolar case, thus leading for lower losses in the motor itself

5. Circuit simulation

Based on the technical note TN90002 and on the hardware seen in Fig. 7simulation 2 was created. This focuses on the H-bridge part containing 4 Nexperia LFPAK56 MOSFETs, the BUK7Y7R8-80E.

Figure 7. Experimental setup with motor and control board

Figure 8. Schematic of motor drive circuit simulation

The simulated circuit may be seen in Fig 8. This focused on the behaviour of the MOSFETs and thus the logic circuit was approximated using a Digital Pulse Source, a Digital Inverter, AND gates, Buffers and Digital to Voltage blocks. Additionally the PWM generators were set to one of the frequency options used in the TN90002, 15.6 kHz. Similarly, 10 Ω gate resistors were used.

6. Logic and MOSFET gate signals

Investigating the schematic shown in Fig. 8 from left to right, one may see the Digital Pulse Source. This is used as an input which dictates the direction in which the motor rotates and the time for which this happens. This input signal, seen as the green trace in simulation 2 replaces a person’s interaction when using the buttons, as in TN90002. The logic signal is set to 1 for 150 ms. In this manner the motor is rotating clockwise. Due to this, Q2 is fully switched ON for this duration and Q3 is switched ON and OFF using the PWM generator. Moreover, Q1 was pulsed with the inverted PWM signal delivered to Q3 in order to reduce the voltage drop on the diode of Q1. In this manner the top MOSFET, Q1, is freewheeling the motor current. If this was not the case and Q1 was OFF the losses would be higher. The control signals for Q1 and Q3 may be seen in simulation 2 as the blue and red traces whereas the ones for Q2 and Q4 may be seen as the light blue and purple traces.

Click below to enter the simulation.

Simulation 2.

As mentioned, due to Q3 switching, a dead time was also required. Considering the signals of Q1 and Q3 as well as for Q2 and Q4 from simulation 2 the used dead time was 2 µs, whereas the one set within the TN90002 was 2.5 µs. This was implemented using the Buffer blocks seen in Fig. 8. Moreover, the 15.6 kHz PWM signal was set to a duty cycle of 12.5%.

Once the logic driving signal reached the Digital to Voltage Converter, a 10 V signal was generated in order to switch ON and OFF the four BUK7Y7R8-40E MOSFETs of the H-bridge.

Click below to enter the simulation.

Simulation 3.

In simulation 3 above, the gate voltages of the respective MOSFETs of the H-bridge may be seen. The MOSFETs forming the left half-bridge, Q1 and Q3 have been switched using PWM whilst Q2 and Q4 have been turned ON or OFF fully for the respective durations. Notice the plots of VGS_Q1 and VGS_Q3 , one can again see the dead time implementation.

Simulation 4 below shows the drain-to-source voltages of the MOSFETs within the left half-bridge may be seen, as well as their respective drain currents. These have been shown for a time window of approximately 100 µs in order to focus the attention to the switching behaviour. Moreover, by multiplying the drain-to-source voltage of Q3 by its drain current, seen in simulation 4 the instantaneous power dissipation was obtained. This data can be averaged and used for the derivation of the FETs thermal behaviour, via a suitable RC network (Foster or Cauer). In order to find the average or rms power one can consult the Wave Viewer and Math operations sections within the tutorial page.

Click below to enter the simulation.

Simulation 4.

7. Motor characterisation and constants

In order to simulate the behaviour of the H-bridge controller demo previously explained the motor characteristics had to be extracted so that for a specified PWM duty cycle the rotor speed in the simulation would match the one of the real application.

The rotor dimensions were measured and by approximating its shape to a cylinder its moment of inertia was found using Eq. 4 where m = rotor mass and r = rotor radius:

(Eq 4)  

For this particular motor the rotor was measured to weigh 220 g and to have a radius of approximately 17 mm, thus yielding an approximately 3.15x10-5 kg·m2 moment of inertia. Additionally the plastic disc was found to have a moment of inertia of approximately 3.5x10-6 kg·m2. By adding the two, the total inertia was found to be 3.5x10-5 kg·m2.

Using a DMM, the winding resistance was measured to be approximately 1.5 Ω. This was also found by conducting a motor stall test and from the step response of the DC motor seen in Fig 9.

(Eq 5) 

Figure 9. DC motor step response

Additionally the electrical time constant of the motor ??, is found using Eq 6. At 63.2% of its steady state value the current in Fig. 9 reaches approximately 1.5 A (Eq 7, Eq 8) This happens at approximately 0.39 ms. Using ?? and the value obtained for the motor winding resistance the winding inductance was found to be approximately 600 µH.

(Eq 6)  

(Eq 7)  

(Eq 8)  

By conducting several measurements the motor’s rotational speeds were found at different voltages as well as the currents and voltages. From these, the motor’s KV and Ke values were inferred and thus the KT value was found to be approximately 0.045 Nm/A.

For the DC motor the following are considered as motor constants (Eq 9):

(Eq 9) 

Lastly, another important parameter was the viscous drag which was found to be approximately 0.0001 Nm/(rad/s). At this stage the motor was characterised and thus expected to behave as the real one presented in the technical note TN90002.

When tested, the real system was found to achieve a rotational speed of approximately 6 RPS or 360 RPM which translated to approximately 37.7 rad/s. The board supply voltage used was 20 V, the PWM frequency, 15.6 kHz and a duty cycle of 12.5%.

Simulation 5.

In the above simulation the motor steady state velocity may be seen. The rotational  speed was found to be approximately 40 rad/s which is similar to the 37.7 rad/s seen in the real  application from Fig. 7. Additionally the motor current and torque for the full simulation period of 150 ms could also be seen and further investigated in the simulation window. In simulation 5 one may see the motor voltage and current for a few PWM periods. These results are  similar to the oscilloscope results of the real system in Fig. 10.

Figure 10. Oscilloscope screen shot of motor voltage and current

8. MOSFETs recommendations by application

Some MOSFET recommendations are given below for applications using half-bridge and H-bridge configurations for motor control. The aimed applications are: mirror folding control, window lifter for anti-pinch function, seat control, sunroof and power tailgate control as well as fuel, water and air pumps.

8.1. Power folding mirror

Some MOSFETs that are recommended for this 12 V or 24 V H-bridge application are summarised in Table 1.

8.2. Window lifter for anti-pinch function

For this application the MOSFETs and system may be required to have low on-state losses, overcurrent protection, low thermal resistance and low thermal impedance as well as the need to be integrated into a relative small board area. The control uses PWM with frequencies ranging from 10 to 20 kHz. Motor currents of around 2 A to 5 A are expected for normal operation and operation around 10 A for shorter periods of time. In locked rotor cases, the current demand is much higher and may reach 30 A for periods ranging from 200 ms to 1 second.

Figure 11. MOSFETs in seat motor control application

8.3. Window lifter for anti-pinch function

For this application the MOSFETs and system may be required to have low on-state losses, overcurrent protection, low thermal resistance and low thermal impedance as well as the need to be integrated into a relative small board area. The control uses PWM with frequencies ranging from 10 to 20 kHz. Motor currents of around 2 A to 5 A are expected for normal operation and operation around 10 A for shorter periods of time. In locked rotor cases, the current demand is much higher and may reach 30 A for periods ranging from 200 ms to 1 second.

8.4. Seat control

In the seat control application two motors are sometimes required, one for the forward and backwards seat adjustment and another for the backrest support adjustment. A schematic of the two H-bridges may be seen in Fig. 11.

More complex circuits may be encountered in high end car models where several other motors are required in order to control things such as height, the left and right chair sides and the head rest position.

8.5. Sunroof and power tailgate control

There are a few motors in sunroof and power tailgate applications. The motors can control the sunroof forward/backward and up/down, therefore the driving stage is required to allow bidirectionality. Both brushed and brushless DC motors can be used in this application, the former driven by a H-bridge (Fig. 12) and the latter using a multiphase half-bridge (Fig. 13). The maximum current needed for this kind of application may be around 10 A for the more power hungry ones.

Figure 12. H-bridge MOSFETs in sunroof motor control Figure 13. 3-phase MOSFETs in sunroof motor control

 

Figure 14. MOSFETs in pump motor control applications

8.6. Fuel, water and air pumps

There are a number of pumps used in automotive applications, such as fuel, water and air pumps. Both brushed and brushless DC motors can be suitable for this application. For the former a simple half-bridge structure can be used (Fig. 14). In some small current load applications, the recirculating FET can be replaced by a Schottky diode. For brushless motor a more comple structure of 3-phase bridge is required Fig. 13. In this case the difference in complexity and number of components can be quite stunning.

Since different motor applications have different power levels, from a small 30 W pump to a 300 W intake fan, the demand for power MOSFETs varies. Due to the many advantages of brushless motors more and more small water pump motors have now adopted the brushless scheme. Here, due to the large number of MOSFETs, we recommend the use of smaller packages such as the LFPAK33 and the LFPAK56D (dual devices) MOSFETs for motor drive. The 40 V device is suitable for the application of most 12 V motors. The specific model selection calls for the appropriate packaging and internal resistance, according to the load power of the motor and the overall cooling requirements of the module. Standard level VGS threshold is suggested.

Applications

System recommendations

MOSFET characteristics

MOSFET recommendations

Power folding mirror  
  • Low on-state losses

     

  • Over-current protection

     

  • Small footprint
 
  • RDSon

     

  • ID,IDM

     

  • LFPAK56, LFPAK56D, LFPAK33
 BUK7Y3R5-40E
 BUK7K6R2-40E
 BUK9M14-60E
Window lifter for anti-pinch  BUK7Y4R4-40E
 BUK7K6R8-40E
 BUK7M6R0-40H
Seat control  BUK7Y3R5-40E
 BUK7M6R0-40H
 BUK7K6R2-40E
Sunroof and power tailgate control  BUK7Y3R5-40E
 BUK7Y4R4-40E
 BUK7K6R2-40E
 BUK7M6R0-40H

Table 1. Recommended MOSFETs for automotive motor control applications

9. Summary

The main applications of DC motors and MOSFET recommendations have been discussed.

Nexperia offers many suitable options for the most popular applications. DC motor modelling and characterization has been presented, which can be used to better predict the performance of the driving circuitry and the selection of the necessary components. Theoretical and practical notions of H-bridge have been outlined, in particular methods of implementing PWM, motor ripple current, MOSFET dissipation and switching frequency selection.

Finally an example from the technical note TN90002 has been presented. Its main features and operational concept have been summarized and further aspects clarified in more details. Interactive simulations of this system have been embedded into this application note to assist in understanding the driver and power stage operation.

PartQuest embedded Cloud simulations were used in this interactive application note.

Page last updated 28 September 2021.
好吊妞一样的免费视频| 中文字幕人妻少妇久久| 午夜免费福利视频一区| 人妻少妇被猛烈进入中出视频 | 伊人久久综在合线亚洲| 国产欧美日韩综合精品二区| 我爱美女小骚骚的小骚逼| 东北老女人被操的大声喊逼痒死| 一区二区三区人妻在线| 色欲av一区二区三区精品| 国产高清白丝在线观看| 国产97在线精品一区| 亚洲精品免费观看91| 亚洲欧洲av午夜精品| 五月婷婷六月丁香俺也去| 高跟翘臀后进式视频在线观看| 久在线观看视频在线观看免费| 欧美日韩国产福利在线观看| 色综合久久久久久久激情| 五月婷婷六月丁香亚洲综合| 货在沙发风骚至极 自摸肥逼勾引 又黄又爽有无遮挡的网站 | 一级a做片免费观看久久| 日本精品一线在线观看| 国产女人av一级一区二区三区 | 美女无套内射粉嫩99内射| 亚洲欧洲日韩另类99在线| 亚洲高清中文字幕综合网| 日本熟妇内射一区二区| 欧美一级久久精品费色a| 无遮挡男女一进一出视频真人| 神马午夜伦理精品亚洲| 男人的天堂社区东京热| 无码人妻精品丰满熟妇区| 国产精品天干天干在线下载| 自拍偷在线精品自拍偷蜜臀| 蜜桃99视频在线观看| 亚洲精品国产成人综合免费| 欧美91精品一区二区三区| 日本中文一二区有码在线| 亚洲毛片成人在线观看| 中国一级做a爰片久久毛片 | 久久久无码精品亚洲日韩18禁| 香蕉久久精品日日躁夜夜躁| 国产在线精品免费播放| 五月婷婷六月丁香俺也去| 亚洲一区二区黄色录像| av精彩天堂在线观看| 精品亚洲一区二区三区91| 成年美女黄网站大片免费| 午夜天堂精品一区二区| 欧美成人综合在线观看视频| 无码系列久久久人妻无码系列| 精品国产一区二区三区卡| 97精品人妻一区二区三区视频| 亚洲另类激情综合偷自拍| 亚洲国产精品毛片av在线下载| 社保交够15年可以辞职等退休吗 | 欧美日高清视频在线观看 | 一卡二卡精品在线免费| 日韩精品在线小视频| 91国产自拍在线一区| 卡通动漫一区二区综合| 在线观看中文字幕二区| 日本一道本日韩精品欧美| 亚洲av一区一区二区三| 久久免费偷拍视频看看| 国产精品国产三级国产av闹| 又嫩又硬又黄又爽的视频| 18禁看一区二区三区| 中文字幕激情av电影| 国产主播在线一区二区| 国产又色又爽又黄的视频多人| 亚洲91美女夜夜爱爽爽福利| 精品久久久久久中文字幕网 | 日韩精品无乱一区二区| 中文人妻av一区二区| 国产精品一区二区三区欧美| 久久精品国产99久久久| 欧美日韩激情在线一区二区| 五月天丁香婷婷狠狠狠| 国产主播在线一区二区| 亚洲欧洲国产精品香蕉网| 亚洲五月婷婷中文字幕| 亚洲91美女夜夜爱爽爽福利| 国产午夜精品一区理论片| 探花农村老头操老妇说话对白 | 中国无码AV看免费大片在线| 成人国产亚洲欧美日韩| 高清一区二区中文字幕| 老女人黄色性生活高清版| 精品久久久久久中文字幕网 | 扫码观看视频的二维码怎么生成| 91蜜桃臀久久一区二区| 国产精品超碰在线97| 久草手机在线观看视频| 欧美系列一区二区三区在线播放| 黄色段片一区二区三区| 久久综合亚洲一二三区| 久久蜜臀一区二区三区av| 日韩精品视频在线观看的| 久久精品国产99久久久| 我要看外国女生操逼逼的视频 | 啊啊啊好舒服不要再插了要高潮了 | 国产免费成人在线观看视频| 在线观看日本一区二区三区四区| 精品久久国产蜜臀色欲69| 亚洲一区二区三区欧美在线观看| 风韵丰满熟妇啪啪老熟女| 亚洲国产精品成av人| 高清日韩中文字幕在线| 动漫无遮羞视频在线观看| 欧美精品在欧美一区二区三区 | 一区二区三区婷婷中文字幕| 呃呃啊啊啊好爽快到了黄色| 日韩精品少妇专区人妻系列| 国产精品久久久久久码| 在线不卡视频国产观看| 色偷拍亚洲偷自拍视频| 青青草原在线视频首页网站| 高清日韩中文字幕在线| 日韩精品在线视频vvv| 亚洲黄色成人av在线电影 | 国产午夜福利导航在线| 成年美女黄网站大片免费| 欧美日韩中文精品在线| 我想看黄片久久久久久久久久久| 免费黄色日韩在线观看| 淫荡女人水嫩嫩逼爆肏视频| 99国产精品亚洲一区二区三区| 搡女人真人视频不用下载| 日本五十路熟女啪啪啪| 东北少妇自拍高潮喷水| 国产精品大片在线播放| 日韩AV在线一区二区三区合集| 日韩av在线播放免费观看| 日本剧情片在线播放网站| 三级片无码高清免费国产| 亚洲一区二区天堂在线| 国产福利精品蜜臀91啪| 丰满美女性爱在线视频看看| 最新推荐久久伊人久久久| 国内精品久久人妻白浆| 绿帽娇妻在卧室疯狂的呻吟| 欧美一区二区三区爽爽爽| 亚洲欧美另类丝袜在线| 国产黄色污一区二区三区| 午夜伦理激情福利视频| 亚洲一区二区精品免费观看| 精品国产三级国产普通话| 骚货操死你捅死你骚逼视频| 亚洲日本国产乱码va在线观看| 精品国产美女福到在线不卡| 国产白嫩无套视频在线播放蜜桃| 久久综合九色综合本道| 久久综合中文字幕一区二区| 国产一级二级三级内谢| 婷婷亚洲综合五月天麻豆| 欧美一级久久精品费色a| 国产综合色在线视频观看| 中文字幕一区二区三区乱码人妻| 97人人视频波多野结衣蜜月| 成年人午夜黄片视频资源| 9久精品久久综合久久超碰1| 欧美a级黄色中文字幕手机在线| 美日韩一级片欧美一级片| 成人性生活视频在线观看| 我要大鸡吧在线观看免费| 日本女同学在工作里小媳妇操逼逼| 韩国三级一区二区三区| 日本黄色中文字幕不卡在线| 日韩在线精品国产一区二区| 精品人妻一区二区三区mp4| 91人妻人人澡人人爽人人精品一| 波多野结衣AV在线无码播放| 男生把小鸡鸡插到女生阴巢的视频 | 午夜宅男在线视频观看| 青青河边草视频在线观看| 一区二区三区婷婷中文字幕| 玖玖资源网站最新网站| 搭讪人妻中文字幕系列| 男生鸡巴操女生逼逼视频。| 精品久久国产蜜臀色欲69| 禁止的爱善良的小中文在线bd| 丁香激情综合网激情五月| 亚洲欧洲日韩另类99在线| 中文字幕人妻丝袜一区一三区 | 精彩视频尤物视频在线| 中文人妻熟妇精品乱又伧老牛在线| 国产91手机在线播放青青| 嗯啊不要用力操逼视频cable| 中文字幕有码人妻在线| 日韩av天堂手机在线观看| 日本肥老熟妇在线观看| 亚洲中文字幕无码永久免弗首页| 成人深夜在线观看免费视频| 亚洲AV无码专区片在线观看| 国产性色av一区二区| 国产自拍偷拍在线福利| 成人福利视频免费观看| 国产精品人妻熟女av| 太大太粗好爽受不了视频 | 91综合精品国产九色| 视频一区精品中文字幕| 最新推荐久久伊人久久久| 亚洲av精品一区在线| 自拍偷在线精品自拍偷蜜臀| 色综合久久88色综合久久天| 亚洲av人片乱码色午夜| 祼体美女上厕所被操视频APp| 国产精品自在拍在线拍| 在线观看日韩一区二区视频 | 男人抚摸亚洲女大学生的大胸 | 美味人妻手机在线观看| 色婷婷亚洲一区二区在线| 欧美亚洲精品激情视频网| 日韩欧美亚洲国产精品幕久久久| 亚洲欧美另类日韩精品 | 日韩精品视频在线观看的| 久久精品熟女亚洲av天美| 欧美二精品二区免费看| 天堂a免费视频在线观看| 欧美激情网页一区三区| 国产最新视频一区二区三区| 不卡久久精品国产亚洲av不卡| 欧美成人一区二区三区高清| 亚洲最新尤物在线视频| 欧美人与禽交片在线观看| 91人妻人人澡人人爽人人精品| 91九色成人在线观看| 亚洲精品午夜福利网| 国产福利一区二区三区| 高清日韩久久久一区二区| 亚洲一区二区av高清| 波兰中年妇女B操B视频| 男人捅开女人的逼国语对白| 高颜值午夜福利在线观看| 久久久久久精品国产一区| 99国产精品国产自在现线| 日韩推理片2021电影在线观看 | 日韩一区二区在线精品| 亚洲人妻一区二区久久| 91久久精品一区二区三区色欲| 国产免费成人在线观看视频| 漂亮的小蜜桃在线观看| 亚洲精品制服丝袜中文字幕乱码| 中文字幕有码久久高清| 国产女人喷浆抽搐高潮视频 | 插日日操天天干天天操天天透| 9久热久re爱免费精品视频| 日韩欧美亚洲国产精品幕久久久| 美女粉嫩的逼被操到喷水| 日韩一区二区三区东京热| 日韩欧美一级a特黄大片| 久久久久精品午夜理论片| 美女大奶子大鸡巴操逼喷水| 超大鸡巴操处女小骚逼免费视频| 国产天堂av在线免费观看| 欧美日韩国产成人高清视频| 四虎精品视频永久免费| 香蕉av秘 一区二区三区| 免费国产高清在线观看最新| 白白色手机免费在线视频| 美女av一区二区三区| 亚洲熟妇熟女久久精品一区| 好吊视频免费在线观看| 黄片视频在线观看国产| 日本大黄毛逼自拍视频| 婷婷精品国产一区二区| 国产精品高清无遮挡网站| 91精品国产福利在线观看你| 综合色欲久久精99999| 欧美二精品二区免费看| 日产乱码一二三区别免费| 四房色播五月天婷婷丁香| 啊好爽操我逼快用鸡巴操我视频| 大肉棒猛插小逼太爽了视频 | 99久久精品免费看国产免费软件 | 国内揄拍国内精品少妇国语麻豆| 色哟哟一区二区三区四区视频 | 亚洲免费视频区一区二| 国产99久久精品一区二区300| 国产超级碰碰人在线播放| 中文字幕一区二区人妻秘书| 亚洲AV无码一区二区三区动漫| 精品久久只有精品做人人| 黑人巨大精品欧美完整版| 亚洲综合色一区二区三区蜜臀| 亚洲欧美国产日韩专区| 菠萝菠萝蜜在线视频在线播放| 男女男精品视频免费体验| 97久久精品国产精品青草| 欧美日韩国产一区二区的| 国产成人av在线观看| 激情一区二区三区四区| 国产区av一区二区三区| 黄色视频在线观看破处女| 亚洲熟女av一区二区三区| 精品久久只有精品做人人| 重磅泄露操鸡吧美女视频| 淫荡女人水嫩嫩逼爆肏视频| 美女被鸡巴插入喉咙视频在线 | 麻豆成人久久精品二区三区红| 国产蜜臀av在线一区在线| 亚洲成人自拍在线视频| 三级网站一区二区三区| 欧美日韩精品成人影院| 日韩精品av在线观看| 黄色网色网色网色网色| 国产黄色污一区二区三区| 啊好爽操我逼快用鸡巴操我视频| 97精品久久九九中文字幕| 黄片视频免费在线观看播放| 欧美大鸡巴猛插肥婆视频| 国产在线乱码一区二区三区潮浪| av中文字幕潮喷在线观看| 性生活视频在线观看视频| 亚洲国产午夜福利视频| 情色中文字幕在线观看| 成人欧美一区二区三区1314| 国产郑州性生活免费| 国产午夜精品一区二区三区视频 | 男女性情视频免费网站| 国内老熟妇精品露脸视频| 性生活视频在线观看视频| 青青草99久久这里只有精品| 92午夜福利在线视频| 久久久国产精品1区2区| 隔壁人妻欲求不满中文字幕| 啊啊啊啊啊啊啊啊操我啊啊啊免费| 91福利区一区二区三区| 国产精品一区二区大白腿| 嗯啊男人捅女人小穴视频| 亚洲精品国产欧美成人| 久久亚洲出白浆无码国产| 偷拍偷窥女厕一区二区视频| 99热这里只有是精品7| 亚洲精品国产欧美成人| 欧美三级视频一区二区三区| 国产va免费精品观看精品视频| 97精品久久九九中文字幕| 成人两性生活免费视频| 国产日韩欧美亚洲另类| 又大又长又黄又粗又爽的视频| 91国产自拍在线一区| 日本高清一区二区三区高清视频| 国产精品有码av在线| 久久精品免视看国产成人| 亚洲精品在线韩国日本| 97人妻午夜福利视频| 久久天天躁狠狠躁夜夜婷 | 成人三级在线播放线观看| 日本大黄毛逼自拍视频| 国产超碰天天爽天天做天天添| 亚洲日本乱码一区二区| 免费看美女私人部位的直播| 国产在线视频一区二区不卡| 亚洲一区二区三区精品久久av| 亚洲三级成人一区在线| 精品国产美女福到在线不卡| 国产va免费精品观看精品视频| 亚洲国产日韩欧美综合在线| 国产自产拍午夜免费视频| 久久久久精品午夜理论片| 亚洲精品一二三区不卡| 天天久久狠狠伊人第一麻豆| 深夜福利一区二区三区欧美| 欧美情欲片一区二区三区| 日韩在线一区精品视频漫画| 操逼肥的一线天白虎女人 | 国产夫妻自拍刺激视频在线播放| 亚洲欧美日韩欧美一区二区三区| 亚洲中文在线视频观看| 神马午夜伦理精品亚洲| 深夜视频在线观看你懂的| 国产一二三在线不卡视频| 欧美日韩中文精品在线| 国产欧美成人精品一区二区| 韩国三级一区二区三区| 国产精品污双胞胎在线观看| 91出品视频在线观看| 最近日韩精品视频在线| 午夜影院1000在线免费观看| 成年美女黄网站大片免费| 91嫩草国产在线无码观看| 国产农村av对白观看| 国产精品91福利一区二区三区| 久久999精品米奇久久久| 正在播放女子高潮大叫要| 久久久国产综合av天堂| 黄色网色网色网色网色| 欧美激情网页一区三区| 五月天丁香啪啪激情综合 | 日韩精品毛片在线看| 美国黑人大屌操白美女小逼逼| 淫妇小穴好爽啊出水视频| 无码a级毛片免費视频内谢| 日本一区二区免费在线不卡 | 精品国产高清中文字幕| 91人人妻人人澡人人爽秒播| 大香蕉在线大香蕉在线大香蕉在线 | 啊啊啊啊啊啊啊啊操我啊啊啊免费 | 亚洲一级毛片免费在线观看| 人妻少妇精品视频中文字幕免费| 想看操真人老女人逼的视频| 三级电影在线观看不卡| 国产欧美日韩综合精品二区| av精彩天堂在线观看| 国产999精品老熟女唐老鸭 | 男人大丁丁射精AV汇编| 我爱美女小骚骚的小骚逼| 国产日本草莓久久久久久| 国产欧美日韩综合精品二区| 草欧美女高中生的大逼喷水高清| 一区二区三区在线观看日本| 日韩精品在线视频vvv| 欧美三级视频一区二区三区| 成年免费A级毛片天天看| 在线观看欧美激情第一页| 91精品国产福利在线观看你| 动态强干叉美女小穴视频| 久久国产精品免费看小草| 大鸡插黄在床上做运动不遮掩| 搜索黑人性欧美大战久久| 亚洲欧美日韩偷拍丝袜| 成年女人喷潮毛片免费播放 | 欧美无遮挡在线国产不卡| 国产一级性生活片免费观看| 一本到中文无码AV一区| 国产农村av对白观看| 一区二区三区亚洲免费看| 久久999热这里的精品| 啊啊啊好舒服不要再插了要高潮了 | 久热这里只有精品视频4| 国产精品亚洲综合第一区| 日韩色视频一区二区三区亚洲| 国产又黄又爽又粗的视频在线观看| 最新推荐久久伊人久久久| 公侵犯人妻中文字幕一区| 国产日韩在线视看高清视频手机| 人妻少妇精品视频区二| 国产精品美女性感视频一区二区| 亚洲av精品一区在线| 把体操服美女摁在桌上操| 日韩在线观看免费av| 女生尿洞被男生捅的视频 | 操逼啊口爆啊rrr中途啊免费| 亚洲一区二区三区中文| 日本在线有码中文视频| 在线观看中文字幕二区| 亚洲熟女av一区二区三区| 蜜臀在线观看免费视频| 国产精品欧美精品日韩精品| 成人福利视频免费观看| 探花农村老头操老妇说话对白| 国产精品91福利一区二区三区| 国产999精品老熟女唐老鸭 | 精品国产美女福到在线不卡| 午夜99精品一区二区三区| 亚洲黄色成人av在线电影| 快插我的逼逼里好爽的免费视频| 日韩精品视频在线观看的| 欧美精品久久久天堂一区| 自拍偷在线精品自拍偷蜜臀| 久久久久精品午夜理论片| 久久久久久久久久久久新| 欧洲中文字幕日韩精品成人| 国产一级片大全免费在线播放| 美女av一区二区三区| 男女激情视频网站免费在线 | 日本熟妇的诱惑中文字幕 | 欧美日韩国产成人高清视频| 夫目中文字幕一区二区| 久久精品国产亚洲av影片 | 9久热久re爱免费精品视频| 日本不卡在线视频二区三区| 日本到在线高清视频观看| 成人经典视频免费在线| 国产女人喷浆抽搐高潮视频| 久久亚洲精品专区蓝色区| 美日韩精品一区三区二区| 把体操服美女摁在桌上操| 99热精品在线观看首页| 啊啊啊啊啊啊啊啊操我啊啊啊免费| 午夜福利观看在线观看| 高潮颤抖大叫正在线播放| 99久久无色码亚洲字幕| av天堂天堂av日韩| 国产精品三级精品国产50| 黄色三级三级三级免费观看| 成人公开无码免费DVD视频| 扫码观看视频的二维码怎么生成| 日逼大阴户听书性爱刺激| 在线观看亚洲欧洲精品 | 学生妹被爽到高潮受不了视频| 91免费精品国产拍在线| 色久悠悠在线观看视频| 综合激情五月三开心五月| 日本中文一二区有码在线| 久久狼精品一区二区三区| 亚洲av二三四五又爽又色又色| av在线中文字幕乱码| 日日摸夜夜添夜夜添亚洲女人| 青青草青娱乐免费在线视频 | 最新精品亚洲成a人在线观看| 精品国产尤物黑料在线观看| 大鸡插黄在床上做运动不遮掩| 91久久精品美女高潮喷白桨| 欧美日韩欧美性生活视频| 亚州欧美大鸡巴操肥逼逼| 在线免费看黄国产精品| 亚洲精品一二三区不卡| 无码无羞耻肉3d动漫在线观看 | 一区二区三区最新中文字幕| 精品国语自产拍在线观看| 无情的大屌操骚穴的视频| 久久精品国产亚洲av影片| 久草手机在线观看视频| 国产成人av在线观看| 亚洲国产精品毛片av在线下载| 亚洲精久久久久久无码精品| 国产大陆日韩一区二区三区| 色综合天天综合网天天| 国产精品视频免费自拍| 97人妻午夜福利视频| 日韩欧美一级特黄大片| 男人大丁丁射精AV汇编| 日韩精品一区二区三区视频网| 亚洲韩国强奸理伦中文字| 日韩在线精品国产一区二区| 国产日韩在线一二三区| 男人下面插入女生下面啊啊啊视频| 女人逼需要大鸡吧干的视频| 国产一区二区精品播放| 国内少妇人妻精品视频| 亲少妇摸少妇和少妇啪啪| 成人深夜在线观看免费视频| 一本大道加勒比久久综合| 日本女同学在工作里小媳妇操逼逼 | 亚洲精品福利视频免费| 强奸爆操女白领嫩穴好紧| 把体操服美女摁在桌上操| 少妇连续高潮爽到抽搐| 欲求不满人妻av中文字幕| 啊啊啊逼逼好痒啊啊视频| 不要抽骚货的骚逼了视频| 一级国产片在线观看免费| 欧美情欲片一区二区三区| 91综合精品国产九色| 韩国女主角男女裸体操逼鸡巴操逼| 亚洲一区精品二人人爽久久| 亚洲精品无码专区在线观看| 日韩精品无乱一区二区| 日韩一区二区三区东京热| 黄色一级精品久久久九九| 一本到中文无码AV一区| 免费 无码 国产在线观| 17岁日本免费完整版观看| 四虎精品视频永久免费| av天堂午夜在线观看| 久久精品日本一区三区| 两根肉棒操的好爽的视频| 韩国三级一区二区三区 | 97精品视频在线观看| 亚洲欧美国产专区在线观看| 绿奴舔屁眼哦哦哦操我啊哦哦哦 | 天天操夜夜一操免费看| 国产学生粉嫩在线观看在| 社保交够15年可以辞职等退休吗| 日日噜噜噜噜夜夜爽亚洲| 国产一级片大全免费在线播放 | 亚洲理论中文在线观看| 黄色网色网色网色网色| 国产三级在线观看官网| 日韩AV无码免费看久久久| 日日噜噜噜夜夜噜噜噜| 欧美日韩国产一区二区的| 国产黄色性生活一级片| 中文字幕人妻高清乱码| 日本女中年在工作隐私小鸡巴操逼| 色欲av一区二区三区精品| 91中文字幕国产精品| 97精品在线视频播放| 午夜亚洲精品中文字幕| 人妻精品久久一区二区| 精品人妻伦九区久久69| 久久999国产高清精品| 97精品国产自产在线观看永久| 久久人妻久久人妻涩爱| 国产在线乱码一区二区三区潮浪| 亚洲人妻av一区二区| 大鸡巴厂长狂操女人的无毛小逼 | 久久综合九色综合色多多| 亚洲国产精品毛片av在线下载| 七月婷婷精品视频在线观看 | 日逼大阴户听书性爱刺激| 隔壁人妻bd高清中文字幕| 大鸡巴不停抽插双插喷水漫画视频 | 国产日本亚洲一区二区| 日本五十路熟女啪啪啪| 夜夜爽狠狠天天婷婷五月| 青青草青娱乐免费在线视频| 国产91手机在线播放青青| 国产一级二级三级内谢| 国产草莓视频无码a在线观看| 欧美黄色成人在线电影| 97精品在线视频播放| 久久综合中文字幕一区二区| 欧美精品国产成人综合亚洲| 国产一卡在线免费观看| 久久精品av免费观看| 99国产欧美久久久精品蜜桃| 乱淫一区二区三区麻豆| 日日噜噜噜夜夜噜噜噜| 丰满人妻连续中出中文字幕在线| 亚洲中文字幕有码视频 | 成年女人喷潮毛片免费播放 | 欧美高清视频在线播放| 91男厕偷拍男厕偷拍高清| 正在播放国产无套露脸视频| 日韩中文字幕在线视频免费观看| 黄色av网站一区二区三区| 亚洲欧美国产专区在线观看| 97视频精品免费观看| 中文字幕有码视频推荐| 国产精品人妻熟女av| 国产中文字幕最新一区| 日韩一区二区在线精品| 中文字幕亚洲精品激情欧美| 在线播放国产精品自拍| 精彩视频尤物视频在线| 精品自拍视频国产免费自拍视频| 久久综合亚洲一二三区| 淫荡女人水嫩嫩逼爆肏视频| 久久国产一级黄色片子| 香港三日本三韩国三欧美三级| 久久精品日本一区三区| 免费观看又色又爽又黄的| 欧美日韩一区二区人妻| 在线蜜臀av中文字幕| 一起草视频网站在线播放| 夫妻性生活视频在线直播| 男女性情视频免费网站| 亚洲精品偷拍自综合网| 久久精品国产亚洲av护士长| 亚洲av日韩av高清在线播放| 92午夜福利在线视频| 艳妇臀荡乳欲伦69调教视频| 波兰中年妇女B操B视频| 久久精品日本一区三区| 91综合精品国产九色| 国产男女高清视频在线| 大鸡巴操大人体逼的视频| 干黑丝袜美女的小骚穴影片| 97精品伊人久久大香| 国产男女猛进猛出粗暴啊| 好吊妞一样的免费视频| 亚洲一区二区三区网址| 91精品麻豆日日躁夜夜躁| 久久99这里只有免费费精品| 美女大奶子大鸡巴操逼喷水| 女生尿洞被男生捅的视频| 夫妻性生活视频在线免费看| 一区二区三区婷婷中文字幕| 国产精品天干天干在线下载| 日本不卡在线视频二区三区| 男人和女人插插视频免费看| 亚洲另类激情综合偷自拍| 欧美熟妇另娄久久久久久 | 国产免费成人在线观看视频| 无码吃奶揉捏奶头高潮视频| 五十老熟女高潮嗷嗷叫| av日韩精品在线播放| 美日韩一级片欧美一级片| 在线日韩人妻高清在线| 黑人爆操中国明星美女小嫩逼视频| 国产精品国产三级国产普 | 成人无码av片在线观看蜜芽| 亚洲欧美在线视频第一区第二区| 国产日本亚洲一区二区 | 999国产精品永久免费视频| 精品国产高清中文字幕| 少妇厨房愉情理伦片视频在线观看| 99久久午夜精品一区二区欧美 | 午夜激情毛片在线观看| 亚洲一区精品二人人爽久久| 九九热视频大全精品免费| 久久久久亚洲精品国产av麻豆 | 欧美高清视频在线播放| 无码国内精品人妻少妇蜜桃视频| 人妻少妇精品视频中文字幕免费| 青青青在线视频免费播放| 懂色av噜噜一区二区| 欧美视频中文字幕视频日韩视频| 米奇8888在线精品视频| 国产蜜臀av在线一区在线| 夫妻性生活一级黄色大片| 五月天丁香婷婷一区二区| 成人公开无码免费DVD视频| 99国产精品黄色片子| 免费黄色国产精品日更| 艳妇臀荡乳欲伦69调教视频| 一级a做片免费观看久久| 久久精品中文字幕一二三 | 在线免费看黄国产精品| 人妻少妇精品视频区二| 99尹人香蕉国产免费天天拍| 国产精品国产午夜免费看| 美女av一区二区三区| 韩国免费A级毛片久久不卡片| 不卡av免费在线网址| 99国产欧美久久久精品蜜桃| 美女无套内射粉嫩99内射| 黄色网色网色网色网色| 在线观看男人鸡桶女人的| 草欧美女高中生的大逼喷水高清| 久久99这里只有免费费精品| 强奷漂亮的夫上司犯在线观看| 黄色顶级男和女性视频毛视频 | 一本色道久久88综合日韩| 国产区av一区二区三区| 男人大丁丁射精AV汇编| 亚洲国产免费一区二区| 久久久久久精品国产一区| 美女扒开双腿被捅的视频| 香蕉久久精品日日躁夜夜躁| 亚洲一区二区三区精品久久av| 亚洲AV无码专区片在线观看 | 大屁股迷人少妇在线观看| 成人无码黄动漫在线播放| 国产中文字幕在线免费观看| 17岁日本免费完整版观看| 在线播放国产精品自拍| 欧美精品在欧美一区二区三区| 在线日韩人妻高清在线| 麻豆精品人妻一区二区三区99 | 精品日韩一区二区三区| 亚洲三级成人一区在线| 动漫无遮羞视频在线观看| 99久久婷婷国产综合精品免费| 插日日操天天干天天操天天透 | 中文字幕中文字幕乱码| 国精产品一品二品国精品| 国产精品系列在线播放| 中文人妻av一区二区| 黄色段片一区二区三区| 成年免费大片观看在线| 亚洲中文字幕有码视频| 黄色av网站一区二区三区| av日韩精品在线播放| 天堂a免费视频在线观看| 韩国床震无遮挡免费视频| 亚洲91美女夜夜爱爽爽福利| 91在线免费在线观看| 日本是全亚洲最发达的国家| 欧美色综合视频一区二区三区| 亚洲成人自拍在线视频| 五月天丁香婷婷一区二区| 亚洲美女一区二区暴力吞精| 久久久精品国产精品久久| 女人的天堂av网免费| 一区二区三区人妻在线| 97碰碰车成人免费视频| 男生操女生小逼爽爽爽看看| 成人国产激情自拍视频 |