操逼啊口爆啊rrr中途啊免费-中文字幕av网一区二区-中文字幕久久精品波多野结百度-国产三级视频在线观看

雙極性晶體管

二極管

ESD保護(hù)、TVS、濾波和信號調(diào)節(jié)ESD保護(hù)

MOSFET

氮化鎵場效應(yīng)晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應(yīng)用認(rèn)證產(chǎn)品(AEC-Q100/Q101)

IAN50004 - Using power MOSFETs in DC motor control applications

This interactive application note aims to give some general insights into how to drive a DC motor using Nexperia Power MOSFET devices.

Authors: Andrei Velcescu and Christian Radici; Application Engineers, Manchester

This interactive application note contains embedded Cloud based simulations to augment the text.

To open the embedded simulation, simply hover over the simulation image. Left click anywhere in the graphic area once the central play button changes in colour. This opens the schematic in the Cloud environment. See the interactive application note tutorial page for more details on how to use the simulations. See accompanying application note: AN50004.

Download AN50004

1. Introduction

Within the automotive environment, Brushed Direct Current (DC) motors play an important role in the control of many applications within the car such as mirror folding control, window lifter, seat control, sunroof and power tailgate control, as well as oil, fuel and water pumps.

Figure 1. DC motor automotive applications

This interactive application note includes simulations of DC motor control and details the modeling of the motor used in the simulations.

2. Relay replacement in a power-folding mirror assembly

In modern automotive applications, an average of about 30 relays are used in a car. Driving a relay is simple, and the internal resistance of the connection can be very low. However, compared with relays, MOSFETs have obvious advantages in noise, service life, miniaturization and reliability. Therefore more and more manufacturers consider using MOSFETs to replace relays.

Figure 2. Relays replaced with MOSFETs

Fig. 2 a) is a motor scheme that mainly uses relays for motor drive. The direction of the motor rotation is selected by the contact of the relay. However, the relay cannot control the current of the motor, so it still needs to be connected to a MOSFET to control the current, so as to meet the functional requirements of anti-pinch.

Fig. 2 b) is a scheme that directly uses MOSFETs to drive the motor. The direction of motor rotation can be controlled using only one MOSFET, while the other MOSFET can be switched by PWM to control the motor current.

A Nexperia demo application which showcases how MOSFETs may replace relays may be seen in Fig. 3. These were used in controlling the mirror power-folding mechanism using 12 V or 24 V H- bridge DC motor control. As can be seen, the relays were replaced with MOSFETs in the LFPAK33, LFPAK56D and LFPAK56 small SMD packages.

Figure 3. Relay replacement demo board

By using any of the power MOSFET variants, there will a space reduction of up to 1:100 in terms of volume, 1:10 in terms of board area and 1:20 in terms of weight. This is depicted by the orange highlighted area in Fig. 3 versus the yellow highlighted area. In terms of performance, the LFPAK MOSFETs will offer high current handling for locked rotor protection, high reliability and full Automotive Qualification AEC-Q101. Lastly, the copper clip within the LFPAK MOSFETs offers a good thermal performance.

 Motor armature equivalent circuit
Figure 4. Motor armature equivalent circuit

3. Brushed Direct Current motor modelling

The DC motor is a common actuator in the automotive environment and in order to understand how to better choose the MOSFETs controlling it and their ratings as well as obtain the wanted behaviour from the motor, it was modelled as shown in Fig. 4. Moreover, as it will be seen later, the motor characterisation was conducted in order to have a representative example.

Click below to enter the simulation.

Simulation 1.

In simulation 1, a DC motor is connected to a DC voltage source of 5 V. This shows that the rotational speed of this particular motor is 103.2 rad/s. Considering the inner structure of the DC motor one can consider its armature circuit, (as can be seen in Fig.4). This contains its electric resistance (Ra), inductance (La) as well as back EMF (e). Moreover, the rotor mechanical constants are also shown as: motor torque (T), rotor angle (θ) and rotor inertia (J). Taking these into consideration and applying some circuit analysis techniques such as Kirchhoff’s voltage law, gives Eq. 1 below:

(Eq 1) 

In this case is the input voltage to the DC motor and the one supplied by the H-bridge which is formed by 4 MOSFETs within 2 half-bridges in order to obtain bi-directional control.

Considering the magnetic field as constant, the torque produced by the DC motor will thus be proportional to the armature current and the motor torque constant KT. This may be seen in Eq. 2 below:

(Eq 2) 

 

Moreover, the back EMF is proportional to the rotor velocity /dt and the back EMF constant K , as shown in Eq. 3 below:

(Eq 3) 

As it is considered that the torque and back EMF constants are equal, the following equality may be given: KT = Ke = K.

Based on the above equations the motor output torque and speed may be approximated by knowing the motor constants. This may be found using the motor data sheet or by measurement. More information about how some of the constants were determined for an example DC motor will be given later.

4. H-bridge theory

The H-bridge, also known as full-bridge, is an electronic system consisting of four switches and capable of creating a bidirectional current and reversible voltage across its load. This function comes in handy when driving a motor because it allows to change the direction of its rotation and, if the application allows it, even to use it as a generator. This circuit is used in many systems such as in inverters (DC/AC), regulators (DC/DC) and class-D amplifiers.

The H-bridge can be thought of as composed of two half-bridges used simultaneously. The half-bridge is capable of bi-directional current but not reversible voltage and therefore, it is mainly used in motor drive applications with single direction motors such as oil pump motors and small fans.

4.1. Modes of switching

The easiest and most popular way to drive a DC motor using a H-bridge is by using pulse width modulation (PWM). Here the MOSFETs are switched at a constant frequency with a control signal having variable duty cycle. This allows the average voltage across the motor to vary and thus control the rotor angular velocity. The MOSFETs in a H-bridge can be switched in different sequences to provide the desired voltage polarity. There are two common modes: bipolar and unipolar.

Figure 5. Bipolar drive H-bridge switching

The bipolar drive allows two MOSFETs to be switched ON at a time. For example for positive current (from node A to node B) both Q2 and Q3 are turned ON. Whereas, for negative current, Q1 and Q4 are turned ON. The direction of the current is chosen by activating one or the other couple of FETs while applying a voltage across the motor that varies between VDC and -VDC, with an average value that depends on the duty cycle (δ), see Fig. 5.

A time delay, known as dead-time, must be set between the turning OFF of one pair and the turning ON of the other pair, in order to avoid cross-conduction (or shoot through), that is shorting the supply.

Due to the magnetic field build up in the motor, during the delay phase some current will continue to flow, even though all the devices are turned OFF, by recirculating through the MOSFETs body diodes.

Figure 6. Unipolar drive H-bridge switching

The unipolar drive scheme, instead, allows for the current to be regulated by keeping ON one right side MOSFET (Q2 or Q4) while switching only one left side MOSFET(Q3 or Q1). In its simplest form it allows for the elimination of the dead time which reduces the complexity of the driver circuit. For the same reason described in the bipolar drive some current will be forced to flow through one of the MOSFETs body diode when the switching MOSFET is turned OFF, see Fig. 6.

If we assume Q3 switching and Q2 turned ON, then when the former is switched OFF the current will flow through Q1 body diode. In order to decrease the loss caused by the diode voltage drop, Q1 can be switched ON while Q3 is OFF. In this case a proper dead-time constraint must be respected.

One of the major difference with the bipolar drive scheme is the fact that the voltage across the motor will have an amplitude of only VDC. As a consequence the peak of the ripple current through the motor ends up being half of the one found for the bipolar case, thus leading for lower losses in the motor itself

5. Circuit simulation

Based on the technical note TN90002 and on the hardware seen in Fig. 7simulation 2 was created. This focuses on the H-bridge part containing 4 Nexperia LFPAK56 MOSFETs, the BUK7Y7R8-80E.

Figure 7. Experimental setup with motor and control board

Figure 8. Schematic of motor drive circuit simulation

The simulated circuit may be seen in Fig 8. This focused on the behaviour of the MOSFETs and thus the logic circuit was approximated using a Digital Pulse Source, a Digital Inverter, AND gates, Buffers and Digital to Voltage blocks. Additionally the PWM generators were set to one of the frequency options used in the TN90002, 15.6 kHz. Similarly, 10 Ω gate resistors were used.

6. Logic and MOSFET gate signals

Investigating the schematic shown in Fig. 8 from left to right, one may see the Digital Pulse Source. This is used as an input which dictates the direction in which the motor rotates and the time for which this happens. This input signal, seen as the green trace in simulation 2 replaces a person’s interaction when using the buttons, as in TN90002. The logic signal is set to 1 for 150 ms. In this manner the motor is rotating clockwise. Due to this, Q2 is fully switched ON for this duration and Q3 is switched ON and OFF using the PWM generator. Moreover, Q1 was pulsed with the inverted PWM signal delivered to Q3 in order to reduce the voltage drop on the diode of Q1. In this manner the top MOSFET, Q1, is freewheeling the motor current. If this was not the case and Q1 was OFF the losses would be higher. The control signals for Q1 and Q3 may be seen in simulation 2 as the blue and red traces whereas the ones for Q2 and Q4 may be seen as the light blue and purple traces.

Click below to enter the simulation.

Simulation 2.

As mentioned, due to Q3 switching, a dead time was also required. Considering the signals of Q1 and Q3 as well as for Q2 and Q4 from simulation 2 the used dead time was 2 µs, whereas the one set within the TN90002 was 2.5 µs. This was implemented using the Buffer blocks seen in Fig. 8. Moreover, the 15.6 kHz PWM signal was set to a duty cycle of 12.5%.

Once the logic driving signal reached the Digital to Voltage Converter, a 10 V signal was generated in order to switch ON and OFF the four BUK7Y7R8-40E MOSFETs of the H-bridge.

Click below to enter the simulation.

Simulation 3.

In simulation 3 above, the gate voltages of the respective MOSFETs of the H-bridge may be seen. The MOSFETs forming the left half-bridge, Q1 and Q3 have been switched using PWM whilst Q2 and Q4 have been turned ON or OFF fully for the respective durations. Notice the plots of VGS_Q1 and VGS_Q3 , one can again see the dead time implementation.

Simulation 4 below shows the drain-to-source voltages of the MOSFETs within the left half-bridge may be seen, as well as their respective drain currents. These have been shown for a time window of approximately 100 µs in order to focus the attention to the switching behaviour. Moreover, by multiplying the drain-to-source voltage of Q3 by its drain current, seen in simulation 4 the instantaneous power dissipation was obtained. This data can be averaged and used for the derivation of the FETs thermal behaviour, via a suitable RC network (Foster or Cauer). In order to find the average or rms power one can consult the Wave Viewer and Math operations sections within the tutorial page.

Click below to enter the simulation.

Simulation 4.

7. Motor characterisation and constants

In order to simulate the behaviour of the H-bridge controller demo previously explained the motor characteristics had to be extracted so that for a specified PWM duty cycle the rotor speed in the simulation would match the one of the real application.

The rotor dimensions were measured and by approximating its shape to a cylinder its moment of inertia was found using Eq. 4 where m = rotor mass and r = rotor radius:

(Eq 4)  

For this particular motor the rotor was measured to weigh 220 g and to have a radius of approximately 17 mm, thus yielding an approximately 3.15x10-5 kg·m2 moment of inertia. Additionally the plastic disc was found to have a moment of inertia of approximately 3.5x10-6 kg·m2. By adding the two, the total inertia was found to be 3.5x10-5 kg·m2.

Using a DMM, the winding resistance was measured to be approximately 1.5 Ω. This was also found by conducting a motor stall test and from the step response of the DC motor seen in Fig 9.

(Eq 5) 

Figure 9. DC motor step response

Additionally the electrical time constant of the motor ??, is found using Eq 6. At 63.2% of its steady state value the current in Fig. 9 reaches approximately 1.5 A (Eq 7, Eq 8) This happens at approximately 0.39 ms. Using ?? and the value obtained for the motor winding resistance the winding inductance was found to be approximately 600 µH.

(Eq 6)  

(Eq 7)  

(Eq 8)  

By conducting several measurements the motor’s rotational speeds were found at different voltages as well as the currents and voltages. From these, the motor’s KV and Ke values were inferred and thus the KT value was found to be approximately 0.045 Nm/A.

For the DC motor the following are considered as motor constants (Eq 9):

(Eq 9) 

Lastly, another important parameter was the viscous drag which was found to be approximately 0.0001 Nm/(rad/s). At this stage the motor was characterised and thus expected to behave as the real one presented in the technical note TN90002.

When tested, the real system was found to achieve a rotational speed of approximately 6 RPS or 360 RPM which translated to approximately 37.7 rad/s. The board supply voltage used was 20 V, the PWM frequency, 15.6 kHz and a duty cycle of 12.5%.

Simulation 5.

In the above simulation the motor steady state velocity may be seen. The rotational  speed was found to be approximately 40 rad/s which is similar to the 37.7 rad/s seen in the real  application from Fig. 7. Additionally the motor current and torque for the full simulation period of 150 ms could also be seen and further investigated in the simulation window. In simulation 5 one may see the motor voltage and current for a few PWM periods. These results are  similar to the oscilloscope results of the real system in Fig. 10.

Figure 10. Oscilloscope screen shot of motor voltage and current

8. MOSFETs recommendations by application

Some MOSFET recommendations are given below for applications using half-bridge and H-bridge configurations for motor control. The aimed applications are: mirror folding control, window lifter for anti-pinch function, seat control, sunroof and power tailgate control as well as fuel, water and air pumps.

8.1. Power folding mirror

Some MOSFETs that are recommended for this 12 V or 24 V H-bridge application are summarised in Table 1.

8.2. Window lifter for anti-pinch function

For this application the MOSFETs and system may be required to have low on-state losses, overcurrent protection, low thermal resistance and low thermal impedance as well as the need to be integrated into a relative small board area. The control uses PWM with frequencies ranging from 10 to 20 kHz. Motor currents of around 2 A to 5 A are expected for normal operation and operation around 10 A for shorter periods of time. In locked rotor cases, the current demand is much higher and may reach 30 A for periods ranging from 200 ms to 1 second.

Figure 11. MOSFETs in seat motor control application

8.3. Window lifter for anti-pinch function

For this application the MOSFETs and system may be required to have low on-state losses, overcurrent protection, low thermal resistance and low thermal impedance as well as the need to be integrated into a relative small board area. The control uses PWM with frequencies ranging from 10 to 20 kHz. Motor currents of around 2 A to 5 A are expected for normal operation and operation around 10 A for shorter periods of time. In locked rotor cases, the current demand is much higher and may reach 30 A for periods ranging from 200 ms to 1 second.

8.4. Seat control

In the seat control application two motors are sometimes required, one for the forward and backwards seat adjustment and another for the backrest support adjustment. A schematic of the two H-bridges may be seen in Fig. 11.

More complex circuits may be encountered in high end car models where several other motors are required in order to control things such as height, the left and right chair sides and the head rest position.

8.5. Sunroof and power tailgate control

There are a few motors in sunroof and power tailgate applications. The motors can control the sunroof forward/backward and up/down, therefore the driving stage is required to allow bidirectionality. Both brushed and brushless DC motors can be used in this application, the former driven by a H-bridge (Fig. 12) and the latter using a multiphase half-bridge (Fig. 13). The maximum current needed for this kind of application may be around 10 A for the more power hungry ones.

Figure 12. H-bridge MOSFETs in sunroof motor control Figure 13. 3-phase MOSFETs in sunroof motor control

 

Figure 14. MOSFETs in pump motor control applications

8.6. Fuel, water and air pumps

There are a number of pumps used in automotive applications, such as fuel, water and air pumps. Both brushed and brushless DC motors can be suitable for this application. For the former a simple half-bridge structure can be used (Fig. 14). In some small current load applications, the recirculating FET can be replaced by a Schottky diode. For brushless motor a more comple structure of 3-phase bridge is required Fig. 13. In this case the difference in complexity and number of components can be quite stunning.

Since different motor applications have different power levels, from a small 30 W pump to a 300 W intake fan, the demand for power MOSFETs varies. Due to the many advantages of brushless motors more and more small water pump motors have now adopted the brushless scheme. Here, due to the large number of MOSFETs, we recommend the use of smaller packages such as the LFPAK33 and the LFPAK56D (dual devices) MOSFETs for motor drive. The 40 V device is suitable for the application of most 12 V motors. The specific model selection calls for the appropriate packaging and internal resistance, according to the load power of the motor and the overall cooling requirements of the module. Standard level VGS threshold is suggested.

Applications

System recommendations

MOSFET characteristics

MOSFET recommendations

Power folding mirror  
  • Low on-state losses

     

  • Over-current protection

     

  • Small footprint
 
  • RDSon

     

  • ID,IDM

     

  • LFPAK56, LFPAK56D, LFPAK33
 BUK7Y3R5-40E
 BUK7K6R2-40E
 BUK9M14-60E
Window lifter for anti-pinch  BUK7Y4R4-40E
 BUK7K6R8-40E
 BUK7M6R0-40H
Seat control  BUK7Y3R5-40E
 BUK7M6R0-40H
 BUK7K6R2-40E
Sunroof and power tailgate control  BUK7Y3R5-40E
 BUK7Y4R4-40E
 BUK7K6R2-40E
 BUK7M6R0-40H

Table 1. Recommended MOSFETs for automotive motor control applications

9. Summary

The main applications of DC motors and MOSFET recommendations have been discussed.

Nexperia offers many suitable options for the most popular applications. DC motor modelling and characterization has been presented, which can be used to better predict the performance of the driving circuitry and the selection of the necessary components. Theoretical and practical notions of H-bridge have been outlined, in particular methods of implementing PWM, motor ripple current, MOSFET dissipation and switching frequency selection.

Finally an example from the technical note TN90002 has been presented. Its main features and operational concept have been summarized and further aspects clarified in more details. Interactive simulations of this system have been embedded into this application note to assist in understanding the driver and power stage operation.

PartQuest embedded Cloud simulations were used in this interactive application note.

Page last updated 28 September 2021.
成人国产激情自拍视频| 在线播放国产精品口爆| 日韩精品在线小视频| 国产美女人喷水在线观看| 加勒比一道本在线观看| 亚洲一区二区天堂在线| 久久久久久久久久久久性高潮| 男人把女人捅到爽爆免费视频 | 亚洲国产精品一区二区三区四区 | 久久蜜臀一区二区三区av| 中文字幕久久久人妻人区| 香蕉久久精品日日躁夜夜躁 | 97激情在线视频五月天视频| 日韩欧美在线观看黄色| 国产欧美成人精品一区二区| 日本一区二区三区精品视频在线| 国产乱码精品一区二区三区播放| 国产传媒第一页在线观看| 亚洲卡通动漫精品中文在线观看| 想看操真人老女人逼的视频| 国内精品久久人妻白浆| 懂色av噜噜一区二区| 日韩美女一区二区三区在线观看 | 强奷漂亮的护士中文字幕| 老女人黄色性生活高清版| 国产女主播作爱在线观看| 青青国国产视在线播放观看91| 国产欧美成人精品一区二区| 92午夜福利在线视频| 欧美色综合视频一区二区三区| 人妻激情人妻交换一区| 日韩精品视频在线观看的| 四虎亚洲中文在线观看| 日日噜噜噜夜夜噜噜噜| 日本高清一区二区欧美| 热99RE久久精品这里都是精品| 91嫩草国产在线无码观看| 裸体女人啊啊啊啊射了好多人啊 | 18禁止免费网站免费观看| 亚洲一区二区av高清| 亚洲人妻av一区二区| 国产又猛又黄又爽无遮挡| 女自慰喷水大学生高清免费看| 国产一区二区三区尤物视频| 久久99精品久久久久久手机免费 | 久久精品国产在热亚洲| 欧美特黄片在线免费播放| 国内精品久久久久久一区二区| 精品一区二区三区久久| 日本五十路熟女啪啪啪| 国际b站免费直播入口MBA智库| 亚洲黄色成人av在线电影| 色综合久久88色综合久久天| 中文字幕国产不卡一区| 中文字幕婷婷丁香色五月| 深夜欧美福利在线视频| 亚洲一区二区三区网址| 精彩视频尤物视频在线| 日本东京热av在线观看| 中文字幕中文字幕乱码| 91国产自拍在线一区| 99久视频在线观看免费| 我要大鸡吧在线观看免费| 国产在线精品免费播放| 日韩午夜一区二区三区| 饥渴少妇高潮露脸嗷嗷叫| 污污污视频在线观看免费视频| 无码av一区二区三区四区| 99久久精品免费看国产免费软件| 国产精品欧美精品日韩精品| 国产99久久精品一区二区300| 欧美一区二区三区最新| 学生妹被爽到高潮受不了视频| 自拍偷在线精品自拍偷蜜臀| 人妻视频在线一区二区三区| 亚洲AV无码专区片在线观看 | 蜜臀在线观看免费视频| 国产夫妻自拍刺激视频在线播放 | 精品久久久久久久大| 91国产自拍在线一区| 国内精品久久久久久一区二区| 17岁日本免费完整版观看| 好爽好硬进去了好紧视频| 久久综合亚洲一二三区| 乱淫一区二区三区麻豆| 男女互射视频在线观看| 久久久成人亚洲精品无码| 国产裸体美女永久免费无遮挡| 免费观看拍1000线观看| 人妻精品久久一区二区| 四虎精品视频永久免费| 这里都是精品熟女内射| 性生活免费在线观看视频| 国产在线观看码高清视频| 亚洲中文在线视频观看| 国产精品一区二区三区欧美| 日韩精品一区二区三区视频放| av中文字幕潮喷在线观看| 国产女人av一级一区二区三区 | AV色欲无码人妻中文字幕| 丰满少妇被粗大猛烈进人高清| 亚洲卡通动漫精品中文在线观看 | 亚洲大色堂人在线视频| 男生操女生的逼视频海量免费| 成年大片在线免费播放| 野花视频在线观看免费高清版| 91精品国产美女福到在线不卡 | av电影日韩在线播放一区二区三区| 三级片无码高清免费国产| 精品国产高清中文字幕| 亚VA芒果乱码一二三四区别| 18禁止免费网站免费观看| 91中文字幕一区二区| 国产一卡二卡精品乱码| 欧美人与禽交片在线观看| 成年免费大片观看在线| 国产精品无码久久综合网| 91亚洲欧美综合高清在线| 欧美激情网页一区三区| 国产精品一区二区三区欧美| 夜夜躁日日躁狠狠久久av乐播| 一本色道久久88综合日韩 | 成年大片在线免费播放| 国产精品久久久久久久第一福利| 最新av国产在线播放| 日韩午夜三级一区二区| 大鸡插黄在床上做运动不遮掩| 亚洲精品不卡一二三区| 色眯眯日本道色综合久久| 中文字幕一区二区三区乱码人妻| 亚洲一区国产午夜福利| 大鸡巴操大人体逼的视频| 亚洲综合国产伊人五月婷| 一本色道久久亚洲av红楼| 厕所偷拍一区二区三区| 蜜桃免费视频在这里看| 亚洲国产精品一区二区三区四区| 91精品久久久老熟女九色9| av精彩天堂在线观看| 日韩欧美一级精品久久| 一区二区三区人妻在线| 丰满少妇被猛烈进入无码蜜桃| 亚洲人人妻人人爽av| 久久a天堂av福利免费播放| 看操小日本女人乱伦逼视频| 亚洲精久久久久久无码精品| 美国妓女与亚洲男人交配视频| 免费人成视频app不收费| 国产片高潮抽搐喷水免费| 亚洲日本乱码一区二区| 成人日韩精品在线观看| 啊我要吃大鸡巴 插到骚逼里好大 亚洲av一区一区二区三 | 国产激情一区二区激情| 91精品久久午夜大片| 中文字幕婷婷丁香色五月| 中文字幕黄色片在线观看| 午夜福利片国产精品张柏芝 | 国产中文字幕在线免费观看| 国产精品久久久久9999不卡| 成人国产亚洲欧美日韩| 日本一区二区免费在线不卡| 日本免费一区二区三区视频在线播放 | 久久狼精品一区二区三区| 精品色欲久久久青青青人人爽| 国产精品无码无不卡在线观看| 亚洲成人av免费在线看| 麻豆回家视频区一区二| 欧美人与禽交片在线观看| 懂色av噜噜一区二区| 看免费国外大鸡巴操小骚逼 | 伦理片免费在在线视频观看| 亚洲理论中文在线观看| 国产视频一区二区三区免费看| 黄色三级电影在线入口| 女优日本中文字幕五十| 精品人妻一区二区三区中文字幕| 亚洲热女乱色一区二区三区| 成人免费在线视频日韩| 欧美系列一区二区三区在线播放 | 欧美色综合视频一区二区三区| 久久999热这里的精品| 久久精品亚洲国产日韩| 正在播放国产无套露脸视频| 免费人成视频app不收费| 亚洲AV无码一区二区三区五月天| 久久综合九色综合色多多| 亚洲欧洲一级av一区二区久久| 啊啊草死我爽日本在线观看| 欧美日韩国产成人高清视频| 丰满女人床上激情久久| 亚洲中文字幕中文在线| 少妇一夜一次一区二区| 在线人妻无码中文dvd视频 | 亚洲精品制服丝袜中文字幕乱码 | 成人麻豆日韩在无码视频| 亚洲国产精品成人综合片| 欧美日韩欧美性生活视频| 漂亮的小蜜桃在线观看| 亚洲欧美另类丝袜在线| 91成人亚洲天堂高清| 中文字幕人妻丝袜一区一三区| 国产91手机在线播放青青| 青青青国产在线观看资源| 嗯啊不要用力操逼视频cable| 日本免费一区二区三区视频在线播放 | 国产精品免费视频播放不卡| 我想看黄片久久久久久久久久久| 亚洲高清中文字幕综合网| 国产精品自在在线午夜精华在线| 夫妻性生活一级黄色大片| 中文字幕人妻丝袜一区一三区| 亚洲精品不卡一二三区| 亚洲国产精品成av人| 国产精品午夜免费福利| 禁止的爱善良的小中文在线bd| 男人操女人嗷嗷叫的视频| 久久精品国产99久久6动漫欧| 久久综合九色综合97| 亚州欧美大鸡巴操肥逼逼| 国产传媒天美av一区二区三区| 亚洲大色堂人在线视频| 丰满熟女少妇一区二区三区| 赿南美女拳交操逼视频大片| 波兰中年妇女B操B视频| 成人欧美一区二区三区1314| 亚洲一区二区三区网址| 大学生高潮无套内谢免费视频| 丝袜美腿福利一区二区| 久久久久久久久久久久性高潮| 国产最新视频一区二区三区| 91精品国产福利在线观看你| 夜夜嗨天堂精品一区二区| 131美女爱做视频高清在线| 日韩精品视频在线观看的| 风韵丰满熟妇啪啪老熟女| 午夜激情毛片在线观看| 少妇连续高潮爽到抽搐| 大鸡吧插没毛的骚逼诱惑视频| 外国的大鸡巴操美女骚逼| 日本一区二区免费在线不卡| 亚洲一级特黄大片婷婷| 国产鲜肉帅哥大鸡巴操美女逼内射 | 不卡av免费在线网址| 北海莫菲尔国际精品酒店| 韩国成人台湾天堂在线| 欧美视频中文字幕视频日韩视频| 青青草99久久这里只有精品| 成人免费在线视频日韩| 亚洲和欧美一区二区三区| 色综合久久久国产精品| 亚洲欧美另类日韩精品 | 成人精品一区二区三区不卡| 亚洲欧洲国产精品香蕉网| 亚洲中文字幕中文在线| 看免费国外大鸡巴操小骚逼| 亚洲色图视频中文字幕| 国产精品午夜久久久久久久久| 久久偷拍情侣激情视频| 欧美色综合视频一区二区三区| 最近日本免费播放视频午夜| 成人午夜福利视频网址| 手机免费av片在线观看| 视频一区视频二区同事| 国产熟女一区二区三区四区| 人妻视频在线一区二区三区| 美国黑人大屌操白美女小逼逼| 波兰中年妇女B操B视频| 一级a做片免费观看久久| 丰满少妇被猛烈进入无码蜜桃| 亚洲熟女国产午夜精品| 美女被大鸡巴插男内射欧美| 日韩欧美亚洲国产精品幕久久久| 不要抽骚货的骚逼了视频| 自拍偷在线精品自拍偷蜜臀| 插逼咬奶头流白浆喷尿视频| 国产精品午夜久久久久久久久| 大屁股迷人少妇在线观看| 久久亚洲出白浆无码国产| 国产中文字幕有码视频| 免费日韩av网在线观看| 国产精品一区二区亚洲推荐| 色橹橹欧美在线观看视频高清免费| 国产精品91福利一区二区三区| 日本大黄毛逼自拍视频| 欧美日韩人妻精品一区二区在线| 女国产精品视频一区二区三区| 国产三级在线观看官网| 女自慰喷水大学生高清免费看| 大鸡巴插进小穴的视频吴梦梦| 男生把小鸡鸡插到女生阴巢的视频| 一本色道久久亚洲av红楼| 亚洲国产精品一区二区久久预告片| 可以免费看的欧美黄片| 操逼操逼操逼操逼操逼操逼!!!| 99尹人香蕉国产免费天天拍| 女性下体被男性猛进猛出的视频| 超大鸡巴操处女小骚逼免费视频| 久久综合中文字幕一区二区| 久青草视频在线免费观看| 久久精品 国产精品香蕉| 日本不卡在线视频二区三区| 搡女人真人视频不用下载 | 我想看黄片久久久久久久久久久 | 欧美日韩一级二级三区高清视频 | 女生的小鸡鸡啊啊少妇初三| 国产精品日韩中文字幕| 亚洲av精品一区在线| 强奷漂亮的夫上司犯在线观看 | 性感骚女爆射搞基喷水操软件下载| 色综合久久久中文字幕波多| 国产精品午夜福利在线观看| 呃呃啊啊啊好爽快到了黄色| 99热这里全部都是精品| 精品日韩av在线免费观看| 综合亚洲欧美一区二区三区| 欧美超碰人人爽人人做人人添| 成人麻豆日韩在无码视频| 色综合久久久久久久激情| 色一情一乱一区二区三区码| 我要看国产的日逼的视频| 精品国产一区二区三区卡 | 亚洲精品一区二区成人精品网站| 肉棒插小穴视频你懂得分享| 久久人人做人人妻人人玩| 亚洲精品午夜福利网| 在线播放国产精品口爆| 91九色成人在线观看| 亚洲综合色成人影院| 美女高潮潮喷冒白浆免费视频| 国产日本亚洲一区二区| 国产黄色网页在线观看| 精精国产xxxx视频在线不卡| 日韩在线中文字幕三区| 九九最新视频免费观看九九视频| 免费黄色大片在线观看| 丰满人妻一区二区三区视频53| 日韩色视频一区二区三区亚洲| 强奷漂亮的夫上司犯在线观看| 久久这里只有偷拍精品视频| 免费国产国语一级特黄aa大片| 久久久久久曰本av免费免费看| 国产免费啪嗒啪嗒视频看看| 亚洲欧洲日?国码久在线| 搭讪人妻中文字幕系列| 成人国产激情自拍视频| 久久999国产高清精品| 国产精品高颜值18禁| 国产精品自在拍在线拍| 国产在线播放精品一区| 国产天堂av在线免费观看| 九九在线精品亚洲国产涩爱| 欧美美女真人全裸外阴大阴口日逼| 隔壁人妻bd高清中文字幕| 国产成人无码区免费AV片蜜臀 | 久久狼精品一区二区三区| 日韩av不卡在线播放| 午夜影院1000在线免费观看| 色欲天综合久久久无码网中文| 久久香蕉免费国产天天看| 香蕉av秘 一区二区三区| 国产999精品老熟女唐老鸭 | 国产精品不卡一区二区久久| 女生的小鸡鸡啊啊少妇初三| 看中文字幕一区二区三区 | 国语成人高清在线观看| 中文字幕有码视频推荐| 亚洲综合色成人影院| 精品自拍视频国产免费自拍视频 | 亚洲AV无码专区片在线观看| 国产成人久久精品麻豆一区| 亚洲美女一区二区暴力吞精| 成人公开无码免费DVD视频| 国产999精品老熟女唐老鸭 | 黄色视频在线观看破处女| 色一情一乱一区二区三区码| 老女人黄色性生活高清版| 亚洲熟妇熟女久久精品一区| 日本熟妇的诱惑中文字幕| 天天久久狠狠伊人第一麻豆| 男人的天堂社区东京热| 裸体女人啊啊啊啊射了好多人啊| 欧美人妻精品一区二区三区99| 色橹橹欧美在线观看视频高清免费| 国产精品午夜久久久久久久密桃| 激情五月天亚洲日婷婷| 免费观看av在线播放| 色综合久久88色综合久久天| 亚洲欧洲av午夜精品| 激情文学婷婷六月开心久久| 啊好爽操我逼快用鸡巴操我视频| 91出品视频在线观看| 亚洲精品福利视频免费| 高跟翘臀后进式视频在线观看| 久久精品亚洲国产日韩| 操逼内射女生免费视频黄片| 激情五月亚洲婷婷综合五月天| 久久久久久久久久久久性高潮| 韩国女主角男女裸体操逼鸡巴操逼 | 国产精品无码免费一级毛住a| 在线播放国产精品自拍| 淫妇小穴好爽啊出水视频 | 国产精品久久久久9999不卡| 欧美人妻少妇精品久久| 天天操天天干五月婷婷热| 日韩精品女性三级视频| 色偷偷的亚洲男人的天堂| 综合色欲久久精99999| 人妻少妇被猛烈进入中出视频| 成人福利在线免费观看视频| 欧美久久国产精品性夜春夜夜爽 | 欧美日韩激情在线一区二区| 丝袜美腿亚洲一区二区| 男人把鸡鸡捅进美女屁骨里| 美女扒开大腿让男生捅高潮的视频 | 中文亚洲精品在线观看| 外国的大鸡巴操美女骚逼| 日韩推理片2021电影在线观看| 大鸡插黄在床上做运动不遮掩| 91精品国产福利在线观看你| 外国的大鸡巴操美女骚逼| 亚洲欧美日韩偷拍丝袜| 精品中文字幕一级久久免费 | 性夜国产夜春夜夜爽三级| 我想看黄片久久久久久久久久久| 不卡久久精品国产亚洲av不卡| 黄色视频一边摸上面一边插下面| 欧美午夜精品福利在线观看| 啊啊啊好舒服不要再插了要高潮了 | 精品色欲久久久青青青人人爽| 丁香激情综合网激情五月| 韩国矫正暴力一级操逼网| 亚洲国产中文剧情av鲁一鲁| 国产无遮挡又爽免费视频| 亚洲av情网站在线观看| 丰满人妻少妇被猛烈进入| 在线亚洲91成人在线视频视频| 强奷漂亮的护士中文字幕| 成人两性生活免费视频| 饥渴少妇高潮露脸嗷嗷叫| 搡女人真人视频不用下载| 美艳人妻办公室抽搐呻吟| 高清女厕偷拍一区二区三区| 日本在线免费播放一区| 免费观看拍1000线观看| 天堂av毛片免费在线看| 男人把鸡鸡捅进美女屁骨里| 国产97在线精品一区| 黑人巨屌女人操逼视频网| 97人妻碰碰碰久久久久免费| 九九久久精品视频免费观看 | 国产精品视频每日更新国产清纯| 91大香蕉大香蕉尹人在线| 久久亚洲天堂av丁香| 久久久久精品午夜理论片| 插日日操天天干天天操天天透| 91中文字幕一区二区| 成人性爱大阴茎视频高甜| 干黑丝袜美女的小骚穴影片| 亚洲五月婷婷中文字幕| 啊啊啊小穴好痒逼逼视频| 国产爽又爽视频在线观看| 青青草青青草在线观看视频| 激情五月天丁香啪啪综合| 国产97在线精品一区| 男人捅开女人的逼国语对白| 插烧女人屁眼视频在线观看| 男人大鸡巴插进美女逼里视频强奸| 性感骚女爆射搞基喷水操软件下载| 太大太粗好爽受不了视频| 青青青国产在线观看资源 | 男生操女生的逼视频海量免费 | 四虎永久在线精品视频免费观看| 在线观看免费完整版日本| 无码吃奶揉捏奶头高潮视频| 最新av国产在线播放| 色综合久久久国产精品| 十八禁网站免费在线观看| 97碰碰车成人免费视频| 淫妇小穴好爽啊出水视频 | 久久精品国产亚洲av影片| 亚洲国产中文剧情av鲁一鲁| 91人妻人人澡人人爽人人精品一| 成人午夜视频在线喷水| 大鸡巴厂长狂操女人的无毛小逼| 美艳人妻办公室抽搐呻吟| 97精品日韩欧美一区二区三区| 色哟哟一区二区三区四区视频 | 男生操女生小逼爽爽爽看看| 国产欧美精品一区二区久久久| 91九色视频在线观看| 美女高潮潮喷冒白浆免费视频| 男人把鸡鸡捅进美女屁骨里| 91午夜精品福利在线亚洲| 国产精品欧美国产精品| 日日噜噜噜夜夜噜噜噜| 中文字幕亚洲欧美日韩在线不卡| 国产片高潮抽搐喷水免费| 看男生和女生插小鸡鸡的软件| 在线观看一区二区三区亚洲| 香蕉久久精品日日躁夜夜躁| 久久久精品欧美中文一区二区三区 | 男人用鸡巴插女人视频下载| 大鸡巴抽插女人骚逼视频| 国产999精品老熟女唐老鸭| 最近日本免费播放视频午夜| 日本女优禁断视频中文字幕| AV色欲无码人妻中文字幕| 国产一二三在线不卡视频| 51短视频精品全部免费| 超碰人人爽爽人人爽人人| 操逼肥的一线天白虎女人| 香蕉久久精品日日躁夜夜躁| 情产国品久久久久久久9999 | 大鸡巴用力抽插骚逼视频| 色综合久久久国产精品| 欧美美女真人全裸外阴大阴口日逼 | 国产精品中文一区二区| 免费无码va一区二区三| 色综合人妻中文字幕精品系列| 韩国免费A级毛片久久不卡片| 国产人碰人摸人澡人视频| 亚洲三级成人一区在线| 一区二区三区最新中文字幕| 日韩午夜三级一区二区| 我要看外国女生操逼逼的视频| 欧美午夜精品福利在线观看| 国产激情高中生呻吟视频| 青青草青青草在线观看视频| 在线日韩一区二区三区不卡| 黑皮体育生大屌射精合集| 日本在线有码中文视频| 亚洲精品精品日本日本| 日本老师做三 片乱码视频| 午夜福利十八周岁成人| 懂色av免费在线播放| 日韩在线一区精品视频漫画| 亚洲精品一二三区不卡| 四虎精品视频永久免费| 丰满少妇被猛烈进入无码蜜桃| 国产在线小视频免费观看| 成人欧美一区二区三区1314| 裸体美女让男人桶免费视频| 亚洲欧美日韩欧美一区二区三区 | 男人天堂一区二区av| 美女白虎穴内射喷水视频在线观看 | 亚洲热女乱色一区二区三区 | 国产中文字幕有码视频| 自由成熟性生活免费视频| 亚洲一级毛片免费在线观看| 男人的天堂av免费社区| 懂色av免费在线播放| 国产精品午夜久久久久久久久| 美日韩成人av免费久久| 日本女中年在工作隐私小鸡巴操逼| 超大鸡巴操处女小骚逼免费视频| 亚洲天堂av在线观看免费| 国产人成91精品免费观看| 国产人碰人摸人澡人视频| 五月天丁香婷婷一区二区| 亚洲欧美日韩偷拍丝袜| 91人妻人人澡人人爽人人精品| 加勒比一道本在线观看| 人人爽人人澡人人人人妻| 日韩爱爱视频在线观看| 国产最新视频一区二区三区| 亚洲AV无码一区二区三区动漫| 国产欧美日韩综合精品二区| 国产激情高中生呻吟视频| 久久精品亚洲国产日韩| 国产黄色污一区二区三区| 久久热福利视频就在这里| 精品一区二区日本视频| 日韩女优日逼视频粉嫩开包| 男女男精品视频免费体验| 国产一级性生活片免费观看| 我想看黄片久久久久久久久久久| 成人无码黄动漫在线播放| 国产黄色污一区二区三区| 精品一区二区日本视频 | 日韩精品视频在线观看的| 日韩美女一区二区三区在线观看| 免费观看又色又爽又黄的| 成年大片在线免费播放| 日韩天堂视频在线播放| 中文亚洲精品在线观看 | 精品国精品国产av自在久国产 | 正在播放国产呦精品系列| 欧美日韩亚洲一区二区在线| 小骚货被打桩啊啊骚叫视频网页| 日本黄大片538视频| 国产学生粉嫩在线观看在| 日本韩国美女久久午夜| 91久久精品一区二区三区色欲| 99热精品在线观看首页| 国产一级二级三级内谢| 99视频在线观看免费的| 丰满人妻av一区二区| 国产精品高颜值18禁| 亚洲熟女国产午夜精品| 东北老女人被操的大声喊逼痒死| 中文字幕有码视频推荐 | 人妖系列中文字幕欧美系列| 四虎精品视频永久免费| 超性感美女被狂日高潮免費視頻| 男人的天堂av免费社区| 美女粉嫩的逼被操到喷水| 啊啊啊好舒服不要再插了要高潮了 | 黑人巨大精品欧美完整版| 97精品在线视频播放| 强奷漂亮的护士中文字幕| 在线日韩AV免费永久观看| 货在沙发风骚至极 自摸肥逼勾引| 激情五月六月婷婷色视频| 九九热最新免费在线观看| 中文字幕一区二区三区乱码人妻| 亚洲精品乱码在线播放| 成人性生活视频在线观看| 在线日韩人妻高清在线| 波多野结衣在线观看一区二区三区 | 好好热精品视频在线观看| 男人大鸡巴日逼视频免费| 黄色视频在线观看破处女| 亚洲精品国产欧美成人| 香蕉成人伊视频在线观看| 三级网站一区二区三区| 操逼肥的一线天白虎女人 | 黄色网色网色网色网色| 免费在线观看国产不卡| 人妻内射一区二区在线视| 男的鸡插进女的逼免费视频| 国产精品一区二区亚洲推荐| 亚洲中文字幕有码视频 | 啊啊啊逼逼好痒啊啊视频| 男生用鸡鸡捅女生屁股免费视频| 国产在线视频一区二区不卡| 国产草莓视频无码a在线观看| 伦理片免费在在线视频观看| 免费成人在线不卡视频| 韩国成人台湾天堂在线| 在线不卡视频国产观看| 久久66热re国产毛片基地| 激情五月六月婷婷色视频| 成年人午夜黄片视频资源| 男人抚摸亚洲女大学生的大胸| av中文字幕潮喷在线观看| 18以上岁毛片在线播放| 国产黄色污一区二区三区| 女人逼需要大鸡吧干的视频| 在线蜜臀av中文字幕| 日本肥老熟妇在线观看| 激情伊人五月天久久综合| 老女人黄色性生活高清版| 久久久午夜福利免费视频| 国产亚洲精品成人av一区 | 啊啊草死我爽日本在线观看| 草草影院黄色在线观看| 午夜影院1000在线免费观看| 99久久午夜精品一区二区欧美| 精品人妻伦九区久久69| 饥渴少妇高潮露脸嗷嗷叫 | 啊啊啊啊啊啊啊啊操我啊啊啊免费 | 欧美成人一区二区三区高清| 久热热久这里只有精品国产| 五十老熟女高潮嗷嗷叫| 夜夜躁日日躁狠狠久久av乐播| 无码人妻精品丰满熟妇区| 亚洲天堂av在线观看免费| 日本漂亮丰满中国人免费看| 草草影院黄色在线观看| 丝袜美腿福利一区二区| 国产诱惑站着操性感美女小穴视频| 午夜视频国产一区二区三区| 欧美大鸡巴猛插肥婆视频| 少妇 特黄一区二区三区| 天堂av一二三区在线播放| 视频一区精品中文字幕| 大鸡巴插学生妹骚逼视频| 五月天丁香婷婷狠狠狠| 午夜韩国理论片在线观看| 成人免费淫片在线观看免费| 欧美一区二区三区播放| 亚洲av人片乱码色午夜| 久久精品国产三级电影| 人妻久久久一区二区三区视频| av网站在线观看亚洲国产| 色哟哟一区二区三区四区视频| 黄色视频在线观看破处女| 成人久久av一区二区| 日本欧美高清乱码一区二区| 国产精品久久久久精品三级下载| 欧美成人一区二区三区高清| 久久人妻久久人妻涩爱| 美女扒开大腿让男生捅高潮的视频| 大鸡巴插入少妇骚穴视频| 午夜免费福利视频一区| 亚洲和欧洲一码二码区视频| 国语成人高清在线观看| 在线视频自拍日韩精品一区| 看日逼的看日逼的看日逼的看日逼 | 美女av一区二区三区 | 日韩午夜一区二区三区| av日韩精品在线播放| 亚洲成人av免费在线看| 男人鸡巴插进女人B里的视频 | 久久久久久曰本av免费免费看| 亚洲日本乱码一区二区| 亚洲天堂自拍偷拍韩日美| 激情国产AV麻豆凡V换脸| 大鸡巴用力抽插骚逼视频| 手机免费av片在线观看| 人妻中文av无码字幕久久| 国产成人av在线观看| 欧洲日韩国产一区二区| 亚洲婷婷熟妇熟女在线| 国产美女人喷水在线观看| 韩国女主角男女裸体操逼鸡巴操逼| 午夜影院1000在线免费观看| 国产精品久久久精品免费| 久久热福利视频就在这里| 91豆麻精品91久久久久久| 搜索黑人性欧美大战久久| 亚洲精品乱码在线播放| 性生活视频在线观看视频| 男人大鸡巴日逼视频免费| 国产精品午夜久久久久久久久| 亚洲国产欧美日韩各类| 亚洲AV元码天堂一区二区三区 | 国产女主播作爱在线观看| 国产精品午夜福利在线观看| 美女大奶子大鸡巴操逼喷水| 香蕉久久精品日日躁夜夜躁| 欧美日韩亚洲人妻在线| 日韩天堂视频在线播放| 91九色视频在线观看| 大鸡巴插入少妇骚穴视频| 高颜值午夜福利在线观看| 大鸡吧插没毛的骚逼诱惑视频 | 男女男精品视频免费体验| 人成网av精品自在自拍| 最新av国产在线播放| 欧美一级久久精品费色a| 国产av自拍日韩高av| 成人日韩精品在线观看| 国产尤物av一区在线| 亚洲av永久无码青青草原| 51短视频精品全部免费| 国产精品日韩中文字幕| 亚洲精品乱码在线播放| 一区二区三区激情在线观看| 日本精品一线在线观看| 天天干天天操天天射嘴里| 青春无码三级视频在线播放| 91精品麻豆日日躁夜夜躁| 国产精品久久久久久久第一福利| 国产真实乱免费高清视频| 自拍日韩亚洲一区在线| 青春无码三级视频在线播放| 亚洲精品中文有码字幕| 偷拍偷窥女厕一区二区视频 | 国产最新视频一区二区三区| 99久久精品免费看国产免费软件 | 131美女爱做视频高清在线| 人妻中文av无码字幕久久| 成人免费在线视频日韩|