操逼啊口爆啊rrr中途啊免费-中文字幕av网一区二区-中文字幕久久精品波多野结百度-国产三级视频在线观看

雙極性晶體管

二極管

ESD保護、TVS、濾波和信號調節(jié)ESD保護

MOSFET

氮化鎵場效應晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應用認證產(chǎn)品(AEC-Q100/Q101)

IAN50009 - Power MOSFET applications in automotive BLDC and PMSM drives

This interactive application note examines power MOSFET applications in automotive BLDC and PMSM drives.

Author: Nandor Bodo, Applications engineer, Manchester

This interactive application note contains embedded Cloud based simulations to augment the text.

To open the embedded simulation, simply hover over the simulation image. Left click anywhere in the graphic area once the central play button changes in colour. This opens the schematic in the Cloud environment. See the interactive application note tutorial page for more details on how to use the simulations.

See accompanying application note AN50009.

 

Download AN50009

Introduction

With today’s top of the range cars having more than 40 electrical machines, the global demand for motor drives rapidly rises. This is especially true for Brushless DC (BLDC) and Permanent Magnet Synchronous Motor (PMSM) drives. BLDC and PMSM are essential parts of Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) propulsion systems towards which priorities globally seem to be directed. BLDC and PMSM drives are also employed where higher power and better regulation is needed in internal combustion vehicles. Some of the key automotive applications for electrical machines and drives are depicted in Fig. 1. Motor applications can be implemented in any of the three main categories shown:

  1. Powertrain – Energy related – key aspect is Performance.
  2. Chassis and Safety – Safety and Comfort – key aspect is Reliability.
  3. Body control – Ease of use and Lighting – key aspect is Cost.

MOSFET automotive applications

Figure 1. Key automotive applications for electrical machines and drives

Figure 2. MOSFET driven Brushed DC motor drive: unidirectional (left) and bidirectional (right).

Electrical machines in automotive applications

Most of the electrical machines in vehicles are volume produced Brushed DC motors that do not have complex speed and torque control requirements. They can be employed in applications such as door locks, mirror folding, electrical seat adjustment and window motors.

The unidirectional and bidirectional Brushed DC motor drives are shown on Fig. 2. More information about these drives can be found in application notes AN50004 and IAN50004.

Figure 3. Three-phase BLDC and PMSM drive

Higher power and control complexity drives in today’s vehicles are mostly realised with BLDC motors. Examples of such applications are water-pump, engine-cooling, anti-locking brake system, fuel-pump and electric steering. These motors, unlike the Brushed DC motors, do not need a physical connection to the rotor. This enables greater robustness, less maintenance, higher power and speed operations. Besides, as it can be seen from the drive configuration in Fig. 3 there are more MOSFETs employed in the drive compared to the Brushed DC motor. This enables current sharing across more devices, inherently increasing the power that can be delivered. As it will be shown later on, the switches operate in sequence, so that one of the three switching pairs does not operate at any instant, allowing the devices to cool. Also, the roles of the switching MOSFET in one phase and the conducting MOSFET (not switching) in the other active phase can be swapped. Both of the afore mentioned methods allow for better distribution of losses across the six MOSFETs, in turn enabling higher power margin up to the maximum die temperature.

Applications that require even higher powers such as the drives involved in the propulsion of the vehicle are mostly realised with PMSM drives. Some of these applications are Electric Power Steering, Starter/Alternator and Transmission pre-charge pumps. The noisier and higher torque ripple operation of the BLDC makes their employment in these applications undesirable. While the higher efficiency, higher power and torque density makes investment in the more expensive PMSMs justified for these applications.

Despite having the same drive structure as the BLDCs (shown in Fig. 3) the PMSMs have completely different modulation and control methods. In fact, even the machine structure is similar, with the difference being in the shape of the produced Back Electro-Motive Force (EMF) having trapezoidal shape with the BLDCs and near-sinusoidal with the PMSM machines.

In the area around a kilowatt of power, there is prospect for both the BLDC and PMSM applications to be designed. Therefore, a 1 kW, 48 V, 3 phase system for the two machine types will be investigated here.

PMSM stator-rotor interaction
Figure 4.?PMSM stator-rotor interaction

PMSM drive theory

This section will explain in simple terms the main principles of PMSM drive. As the name suggests, the PMSM has a permanent magnet (or an array of them) mounted on its rotor. The stator creates a Tesla’s rotating magnetic field. Thanks to the sinusoidal shape of the stator currents and a near-sinusoidal distribution of the stator winding, this field has a constant magnitude but its spatial angle is changed so that it rotates with a uniform speed around the stator circumference, somewhat like the arms of a clock. This magnetic field is the equivalent to having a magnet rotating along the internal stator circumference. Naturally, the magnet of the rotor would tend to align with the stator magnet, causing it to rotate along, at the same speed as the stator field, somewhat as it is shown in Fig. 4.

In order to achieve near-sinusoidal current in all machine phases, all three inverter legs are Pulse Width Modulated (PWM) modulated with sinusoidal reference signals. Sensitive and expensive encoders or resolvers are used to sense the exact rotor position in order to recreate the right phase of the reference sinusoidal supply voltages.

When driven in generator mode, torque is applied to the rotor, forcing it to rotate. This in turn rotates the magnets on the rotor, creating a rotating magnetic field sensed by the stator winding. Due to the sinusoidal spatial distribution of the stator magnets the rotating field induces sinusoidal voltages in the stator windings. If a load is applied to the stator connectors a current will flow through them. This can be inspected in Simulation 1 below.

Simulation 1. PMSM in generator mode

BLDC drive theory

Similarly, to the PMSM the BLDC also has permanent magnets attached to its rotor. However, instead of a rotating field on the stator, the phases are subsequently abruptly energised to pull the rotor magnets forward. This results in a somewhat jerky motion of the rotor, which is filtered to some extent by the rotor and load inertia. The principle is illustrated in Fig. 5. In the first instance, the third inverter leg is idle while the current flows from the top switch of the first inverter leg through phase ‘a’ and phase ‘b’ in reverse direction and finally to the negative dc rail through the lower switch of the second leg. This corresponds to a south pole generated from phase ‘a’ and a north pole generated from phase ‘b’. This driver state is assumed once ‘H1’ hall sensor starts sensing the north pole of the rotor. Because of the construction of the stator and the rotor phase ‘a’ winding pulls the rotor north pole and pushes the rotor south pole away. This state is useful until just before the middle of the rotor south pole reaches the stator phase ‘b’ winding. At this instant H3 hall sensor starts sensing the rotor south pole and the drive configuration changes to the second state in Fig. 5. The currents through the windings are now such that the north pole is generated with winding ‘c’ rather than ‘b’, pushing the rotor north pole further along the stator inner circumference.

There are six such changes taking place in one revolution of the rotor, as shown on the right section of Fig. 5.

Figure. 5. BLDC motor operation principle

PMSM switch rating

When talking about a machine of certain power rating, it is assumed that we are talking about the mechanical power that the machine is capable of delivering on its shaft. For determining the switch rating of the drive, the input electrical power is needed. The difference between the input, electrical and the output, mechanical power are the losses incurring within the machine and drive. Throughout the machine, various losses appear due to magnetization, flow of electric current and mechanical movement of the rotor. These losses can be accounted for by the machine efficiency (η). Therefore, the electrical input power can be expressed as:

(Eq 1)  

The efficiency of the machine depends on the machine type and design quality. For induction machines of several hundred Watts it can go below 50%, while for high-power PMSMs it can reach 95%.

The input power is then expressed as the product of the phase voltage and current root mean square (rms) value:

(Eq 2)  

The number 3 signifies that the drive is three-phase, while the power factor (Pf) is a measure of displacement in time of the voltage and current sinusoidal waveforms. The power factor, a measure inversely indicating the proportion of energy needed for magnetisation of the machine, can also take a broad range of values. PMSM have lower magnetisation requirement and therefore higher power factor values compared to induction machines. They can be driven from unity down to 0.85 power factor.

An inverter is used to drive a PMSM with PWM output voltage. This is illustrated on Fig. 6. The output voltage can take values of 0 V or Vdc. By applying longer pulses of Vdc the average value of the output voltage is increased. As the target (reference) output voltage should be of a sinusoidal shape, with a negative and positive half-cycle, there is no other way of realising it than by adding a dc bias of Vdc/2 to the reference voltage. This will not transfer to the current flow, it will just raise the neutral point potential of the three-phase machine winding since the bias is applied to all three phases.

FIgure 6. Inverter leg with PWM output voltage

It is therefore clear that the maximal output voltage amplitude cannot be higher than Vdc/2. However, certain amount of third harmonic (and its multiples) can be added to the sinusoidal reference. Once again, these harmonics are applied to all three phases, raising the voltage of all three in the same manner and therefore no third harmonic current will flow. The third harmonic can be added in such a way that it decreases the maximum of the reference, allowing more headroom for the reference signal and increasing the modulation range (i.e. the maximum phase voltage applied) by an additional 15%. The same effect can be achieved by calculating the average between the minimum and maximum references (out of the three available) and adding it to all three reference signals. The described method can be studied within Simulation 2. If such reference signals are applied, the performance will be equivalent to space vector modulation.

Simulation 2. Min-max injection modulation method

As the rms voltage is √2 times smaller than the maximum voltage in sinusoidal waveforms, it can be obtained from the Vdc value as:

(Eq 3) 

Next, from (Eq 2) the current rms value can be expressed. Finally, the maximal value of the current is √2 higher than the rms value:

(Eq 4) 

The chosen switch should have at least this current rating. In practise an overload factor of at least 20% is added as well as a safety factor of another 100%. The highest voltage the switch is expected to block is the supply voltage, in cases when the other switch in the same leg is conducting.

BLDC switch rating

BLDCs are mostly aimed at mid-power range applications where machine construction costs are reduced, sacrificing some of the machine efficiency. 

As it is shown in Fig. 5 and its description, one of the three inverter legs is dormant while two are conducting. This means that the machine current along with a voltage up to Vdc/2 is applied to a single phase of the drive 2/3rd of the reference period. As there are three phases the input electric power can be expressed as:

(Eq 5) 

Considering that the current is not as uniform as seen in Fig. 5 a waveform derating factor (wf) of 20% is used to obtain the maximum current the switch shall bear.

(Eq 6) 

The maximum voltage that the switch should block is maintained at Vdc, as with the PMSM.

Table I presents a comparison of the required switch ratings for a 1 kW drive. As it can be seen, the required current values of the switches are similar. The values for the voltage and current rms for the BLDC can be obtained in a similar fashion as for the PMSM, with the ratio between the rms and maximal values being instead of and without the 15% increase due to third harmonic injection.

Table 1. Switch rating comparison for 1 kW drive
  PSMN BLDC Source
Pmeh 1 kW Application requirement
Vbat 48 V Application requirement
Pel 1.11 kW (η = 0.9) 1.17 kW (η = 0.85) (Eq 1)
Vrms 19.51 V 19.59 V (Eq 3)
Irms 21 A (pf = 0.9) 24.5 A (Eq 2) and (Eq 5)
Im 29.8 A 29.4 A (wf = 1.2) (Eq 4) and (Eq 6)

PMSM and BLDC losses calculation

The expected current and voltage that the switches will endure is calculated in the previous section. However, as it is usually the case, the choice of MOSFETs is more constrained by the amount of losses they are designed to endure. The amount of losses is influenced by design requirements (conducted current, switching speed and frequency) or cooling arrangements of the devices.

In this section an explanation of how to calculate these losses will be provided. It needs to be noted that usually at motor control applications the switching frequency is set to be as low as possible as there is no incentive to have it higher. Most applications settle at 20-30 kHz, in order to avoid audible frequencies. It is beneficial to have the switching at lower frequencies so that its harmonics fade out on the frequency axis by the frequency where regulatory requirements start. By having the switching frequency low, the switching losses are not of great relevance in motor control applications.

PMSM conduction losses

The PMSM motor current is sinusoidal, with a certain switching frequency ripple superimposed. Let the period of the sinusoidal control signal be noted with Tc, while the switching period with Ts.

The current in positive direction will flow through the top MOSFET in the positive control half-cycle (T/ 2) during the duty cycle δ in each switching interval Ts. In the negative control half-cycle (T/ 2) for a period (1-δ) Ts negative current will pass through the same switch. Since the top and bottom switches swap roles between control half-cycles (T/ 2) it can be concluded that during a whole control cycle (Tc) one control half-cycle worth of current passes through the switch. This discussion is illustrated in Simulation 3.

Simulation 3. PMSM drive switch current conduction.

The current direction is not relevant because the square of the current is sought. The overall conduction losses can be calculated as:

(Eq 7) 

Where the rms current value is of a half cycle, averaged over the whole cycle period:

(Eq 8) 

This is valid if the reverse voltage drop of the device is below the internal diode conduction threshold and dead-time is not accounted for. For a sinusoidal current with an amplitude Im, the conduction losses come to [1]:
(Eq 9) 

BLDC conduction losses

In BLDC drives the current flows through two inverter legs. In order to regulate the current flowing through the machine windings, at least one of the inverter legs needs to be modulated in order to maintain a desired current magnitude. When only one inverter leg commutates and the other is constantly conducting, the switching method is unipolar, when two legs commutate the switching method is bipolar, as shown in Fig. 7. The unipolar switching shown in Fig. 7 distributes the switching losses between the two FETs of an inverter leg. In both cases the upper and lower switch are being turned on in an alternating manner, to avoid diode loses in the synchronous FET.

Figure 7. Bipolar and unipolar switching of devices

For the conduction losses, the switching mode does not seem to have much influence. The required rms current through the individual switches is the same in both cases. In the bipolar switching mode, looking at the A+, switching at a certain duty cycle δ, a current of value I passes through it for a time δTs (Ts being the switching period) in the first half cycle. In the second half cycle A- is switched with duty cycle δ, while A+ is then switched on for (1- δ)Ts. Therefore, during the hole control cycle a single switch conducts the current equivalent of half a control cycle. Similar is the case with the unipolar switch mode, with the difference that half of the switching cycle the same switch conducts inherently.

Applying (Eq 8) for a constant current I passing through the switch for one third of the switching period, the resulting conduction losses come to:

(Eq 10) 

This conclusion applies when dead-times are very short and the current through the BLDC windings is well controlled to be close to DC with small ripples.

The unipolar method can be simplified, having only the top switches driven with PWM, while the bottom switch is turned on inversely for freewheeling. The respective bottom switches, belonging to the other conducting phase, are held constantly on during the time the current needs to flow through them. In this case uneven distribution of power losses is achieved in the top and bottom switches. The top switch is on for δTs. The bottom switch conducts when it is freewheeling for (1- δ)Ts and for an additional third of the control period when it is held completely on. In this case the integral from (Eq 8) results in:

(Eq 11) 

(Eq 12) 

A simulation for this method is provided in the next section. Due to unequal switch utilisation this method is not discussed further.

In all the switching methods, the diode of the FETs will need to demagnetise the motor phase that stops conducting. The energy accumulated in the phase inductance will therefore be dissipated in each FET diode in each control cycle:

(Eq 13) 

Where L is the machine phase inductance.

Switching losses

The switching energy losses can be estimated as:

(Eq 14)

Where tsw can be approximated by:

 

(Eq 15)
Figure 8. Reading Ion and Vpl(Ion) from the transfer characteristic

Where tsw is the switching time, Ion is the on-state current, Vgd is the gate drive voltage, and RG is the gate resistance. QGD – gate to drain charge and Vpl(Ion) – gate plateau voltage at current Ion, can be read from the data sheet: QGD  from tables and Vpl(Ion) from the transfer characteristic graph (Fig. 8).

In itself, QGD accounts for the voltage transient during the Miller plateau. The current transient that occurs before (turn on) or after (turn off) the Miller plateau is determined by part of QGS. It is accounted for by an approximated increase of the voltage transient by an additional 20 to 30%, represented by the scaling factor sf (sf takes value from 1.2 to 1.3). This percentage is dependent on technology used. The approximation is sufficient here as the switching losses are not expected to dominate because of the low switching frequency. The real switching losses estimates should come from simulations.

The on-state current is the average current in the case of the switching losses. For PMSM the average is calculated for half of the control cycle:
(Eq 16) 

This value can therefore be substituted in (Eq 14) instead of Ion to obtain the switching energies. It is considered that the current ripple is negligible compared to the base value.

The power is then obtained by multiplying the energy values with the number of times a switching occurs during a control half cycle 0.5×fsw/fcc, as the switching losses are negligible when the current through the switch is negative.

(Eq 17) 

In case of the BLDC the switching occurs around I, which needs to be placed in (Eq 14):

(Eq 18) 

The obtained energy levels then need to be multiplied once again with the number of switching occurring in one half of the control period. Due to the device switching only 1/3rd of the half-cycle (Fig. 7 – Unipolar switching) this is expressed as 1/3 × 0.5 × fsw/fcc.

(Eq 19) 

The switching at the negative half cycle is not accounted for in both cases as it is governed by diode switching and it can be omitted. The reason for this is that by the nature of the diode the voltage across it needs to decrease to nearly zero before it can take on any current, achieving nearly zero voltage switching. The diode also cannot start increasing the voltage across its connectors until the current has stopped flowing through it.

Switch selection

As noted, MOSFETs are usually chosen according to the amount of loss they are intended to dissipate.

Based on low switching frequency – 20 kHz is chosen – the conduction losses are expected to be dominant. At this point switching losses are estimated as 50% of conduction losses in PMSMs and 20% in BLDCs. With an allowance of 1.5% losses in the six switches the required RDSon can be calculated from (Eq 9) and (Eq 10) as shown in (Eq 20) and (Eq 21), respectively. The maximum expected current amplitude can be read from Table 1:

(Eq 20) 

(Eq 21) 

This results in a RDSon of 8.3 m? for PMSM and 8.5 m? for the BLDC. To allow for some headroom the BUK7Y7R8-80E is chosen. This is an automotive, 7.8 m?, 80 V, trench 6 technology MOSFET. The drain current of this MOSFET is given as 100 A, roughly 3 times higher than the maximum current needed for the application. This is usual and expected, as the ID rating of the MOSFETs is measured with its mounting base temperature held at 25℃. Table 2 gives an overview of the expected switch performance for a gate drive voltage of 10 V and a gate resistance of 22 ?.

Table 2. Expected switch performance
  PSMN BLDC Source
Switch BUK7Y7R8-80E,

RDSon (typ) = 5.8 m?; VDS = 80 V; I= 100 A, QGD = 17 nC

Data sheet
Pcond 1.29 W 1.16 W (Eq 9) and (Eq10)
Ion 9.94 A 24.5 A (Eq 16) and (Eq18)
Vpl(Ion) 4.7 V 5 V Data sheet  / Fig 8.
tsw_on, tsw_off 88 ns, 99 ns 19.59 V (Eq 15)
Eon+ Eoff 21 µJ, 23 µJ 55 µJ, 55 µJ (Eq 14)
Psw 476 mW 375 mW (Eq 17) and (Eq 19)
Ploss 1.77 W 1.54 W Pcond + Psw

PMSM and BLDC simulations

In this section the simulations for the PMSM (Simulation 4) and BLDC (Simulation 5 and Simulation 6) drive losses are shown. In all simulation switches for one inverter leg have been monitored for energy losses. The electrical motor has been represented by its back EMF, phase resistance and leakage inductance. In the case of the PMSM only one inverter leg is modelled. For the BLDC simulation the switches in the two other inverter leg are replaced by ideal switches to shorten simulation time.

The total energy losses, the MOSFET conduction, turn on and turn off losses are then plotted and their end values displayed. These values should be divided by the simulation length (20 ms) to obtain the results from Table 2. The results from simulation and calculations are compared in Table 3. Simulation 6 is not included in the comparison as the top and bottom switches have a different losses distribution between conduction and switching losses.

 

Table 3. Simulated switch performance
  PSMN BLDC
  Simulation results Theoretical results Simulation results Theoretical results
Switch BUK7Y7R8-80E,

RDSon (typ) = 5.8 m?; VDS = 80 V; I= 100 A, QGD = 17 nC

Vcond 26.6 mJ / 20 ms = 1.33 W 1.29 W 23.8 mJ / 20 ms = 1.19 W 1.16 W
Psw (3.5 mJ + 7.8 mJ/ 20 ms = 565 mW 476 mW (2.7 mJ + 4.3 mJ) / 20 ms = 350 mW 375 mW
Ploss 1.89 W 1.77 W 1.54 W 1.535 W

Simulation 4. PMSM simulation with loss estimation

Simulation 5. BLDC simulation with loss estimation; unipolar modulation; all switches PWM modulated.

Simulation 6. BLDC simulation with loss estimation; unipolar modulation; top switches PWM modulated, bottom switches kept on

Summary

In this interactive application note an overview of electrical machine use in vehicles has been given, including a more detailed look into PMSM and BLDC operating principles. A simple switch selection and switch loss estimation is provided along with simulations to verify the calculations.

References

[1]        J. W. Kolar, H. Ertl and F. C. Zach, "Influence of the modulation method on the conduction and switching losses of a PWM converter system," in IEEE Transactions on Industry Applications, vol. 27, no. 6, pp. 1063-1075, Nov.-Dec. 1991, doi: 10.1109/28.108456.

Page last updated 05 October 2022.
亚洲精品午夜福利网| 操逼操逼操逼操逼操逼操逼!!!| 国产精品亚洲综合图区| 鸡鸡插屁股视频日韩在线免费观看| 伊人2222成人综合网| 强插少妇视频一区二区三区| 七月婷婷精品视频在线观看| 国产人妖免费在线观看| 91人人妻人人澡人人爽秒播| MM1313亚洲精品无码久久| 不卡久久精品国产亚洲av不卡| 奇米777狠狠色噜噜狠狠狠| 人妻视频在线一区二区三区| 精品国产一区二区三区卡| 国产日韩在线视看高清视频手机| 亚洲av无码乱码国产精000| 日韩欧美一区二区不卡在线观看视频| 干黑丝袜美女的小骚穴影片| 男人捅开女人的逼国语对白| 激情五月天丁香啪啪综合| 97精品在线视频播放| 男生操女生小逼爽爽爽看看| 人人爽人人澡人人人人妻| 国产午夜精品一区理论片| 久久久午夜福利免费视频 | 好吊妞一样的免费视频| 国产区av一区二区三区| 欧美一区二区三区 中文字幕| 插日日操天天干天天操天天透| 超碰98人人插完整版在线观看| 女人逼需要大鸡吧干的视频| 色综合久久久国产精品| 国产精品午夜一区二区三区四区| 国产亚洲一区二区三区精品久久| 国产精品中文一区二区| 公交车上猛烈的进入的a片视频 | 天天操天天干五月婷婷热| 国产成人精品日本亚洲777| 亚洲一区二区av高清| 天天操操夜夜操97| 在线观看中文字幕二区| 18禁看一区二区三区| 激情春色欧美激情国产剧情| 亚洲熟女av一区二区三区| 国产97在线精品一区| 久久久久精品午夜理论片| 亚洲av日韩av高清在线播放| 男人下面插入女生下面啊啊啊视频| 久久久精品欧美中文一区二区三区| 亚洲成人av免费在线看| 国产另类在线欧美日韩| 亚VA芒果乱码一二三四区别| 国产999精品老熟女唐老鸭| 97精品人妻一区二区三区视频| 欧美亚洲精品激情视频网| 亚洲一级特黄大片婷婷| 国产av丝袜美腿视频一区| 国产在线精品一区二区三区不 | 高清日韩中文字幕在线| av网站在线观看亚洲国产| 久久免费视频久久免费视频99| 一本色道久久88综合日韩| 日韩成人a片一区二区三区| 又大又长又黄又粗又爽的视频| 亚洲av毛片免费观看| 亚洲欧洲日?国码久在线| 国产精品三级精品国产50| 好吊视频免费在线观看| 在线日韩人妻高清在线| 精品日韩一区二区三区| 亚洲欧洲国产精品香蕉网| 日韩特黄特色大片免费看| 免费国产高清在线观看最新| 91中文字幕国产精品| 亚洲婷婷熟妇熟女在线| 亚洲欧美另类日韩精品| 无码少妇一级av片在线观看| 无遮挡男女一进一出视频真人| 日韩A级毛片免费视频播放| 激情五月天丁香啪啪综合| MM1313亚洲精品无码久久| 视频一区中文字幕在线观看| 在线日韩AV免费永久观看| 在线观看日韩一区二区视频| 国产精品一级二级三级视频| 色偷拍亚洲偷自拍视频| 丝袜美腿亚洲一区二区| 国产av天堂久久精品| 中文字幕亚洲精品激情欧美| 成年女人喷潮毛片免费播放| 欧美日韩亚洲人妻在线| 日韩一区二区三区影片| 日韩黄片毛片在线观看| 国产精品系列在线播放| 欧美日韩艺术电影在线| 黄色视频在线观看破处女| 精品日韩一区二区三区| 人妻视频在线一区二区三区| 免费99精品国产自在现线丫| 精品国精品国产av自在久国产| 想看操真人老女人逼的视频| 看日逼的看日逼的看日逼的看日逼 | 女人的天堂av网免费| 日韩av在线播放免费观看| 亚洲国产免费一区二区| 在线播放免费人成日韩视频| 性夜国产夜春夜夜爽三级| 亚洲天堂av在线观看免费| 色欲天综合久久久无码网中文| 看蓝色的鸡巴搞进去女人的逼里面| 精品一区二区三区久久| 嗯啊好爽用力啊视频在线观看| 男人下面插入女生下面啊啊啊视频 | 在线观看日本一区二区三区四区| 寂寞少妇让水电工爽了一| 国产夫妻自拍刺激视频在线播放| 正在播放干熟妇久久精品视频一本| 深夜福利av在线播放| 成年免费A级毛片天天看| 美女扒开大腿让人桶免费看| 国产一区二区精品播放| 久久久综合久久久鬼88| 色综合久久88色综合久久天| 亚洲国产精品免费线观看| 久久热福利视频就在这里| 九九热视频大全精品免费| 亚洲国产精品一区二区三区四区| 99国产精品国产自在现线| 日本剧情片在线播放网站| 公交车上猛烈的进入的a片视频 | 九九在线精品亚洲国产涩爱| 日韩av天堂手机在线观看| 久久免费亚洲免费视频| 日本到在线高清视频观看| 色综合久久88色综合久久天| 大香蕉在线大香蕉在线大香蕉在线 | 精品一区二区三区久久| 成人一区二区三区在线观看| 激情国产AV麻豆凡V换脸| 黄色段片一区二区三区| 日本欧美高清乱码一区二区 | 小骚货被打桩啊啊骚叫视频网页| 2022AV亚洲天堂在线观看| 亚洲人妻av一区二区| 国内揄拍国内精品久久| 性刺激特黄毛片免费视频| 色噜噜狠狠狠综合曰曰曰| 99热这里全部都是精品| 99国产欧美久久久精品蜜桃 | 国产欧美日韩一区精品| 高清日韩久久久一区二区| 国产一区二区三区粉穴| 中文字幕黄色片在线观看| 日本人体精品一区二区三区视频| 欧美日韩一级二级三区高清视频| 欧洲中文字幕日韩精品成人| 亚洲精品乱码在线播放| 欧美人与禽交片在线观看| 日韩一区二区三区东京热| 色哟哟一区二区三区四区视频| 国产一区二区三区二区| 无码人妻精品丰满熟妇区| 欧美视频中文字幕视频日韩视频 | 国产真实乱免费高清视频| 伊人天堂午夜精品草草网| 亚洲国产精品毛片av在线下载| 久久国产一级黄色片子| 精彩视频尤物视频在线| 无码精品人妻一区人妻斩| 美女av一区二区三区| 色婷婷综合五月在线观看| 精彩视频尤物视频在线| 日本中文一二区有码在线| 大奶女人被操逼操的崩溃| 日韩女优日逼视频粉嫩开包| 成年女人午夜毛片免费视频| 亚洲欧美在线视频第一区第二区| 最近中文字幕国产精品| 自拍偷拍欧美日韩高清不卡| 久久精品国产99久久久| 色欲永久无码精品一二三区| 国产精品系列在线播放| 久久久综合久久久鬼88| 白白色视频免费在线观看| 啊啊啊好舒服不要再插了要高潮了 | 三级网站一区二区三区| 国产偷国产偷亚洲高清| 免费观看拍1000线观看| 日本中文一二区有码在线| 久久精品国产99久久6动漫欧| 美日韩一级片欧美一级片| 亚洲一区二区av高清| 丁香激情综合网激情五月| 伊人久久综合大杳蕉中文无码| 欧美二精品二区免费看| 国产精品无码免费一级毛住a| 久久蜜臀一区二区三区av| 亚洲和欧美一区二区三区| 国产免费成人在线观看视频| 欧美91精品国产自产在线| 国产精品区第二页尤自在拍| 激情五月天亚洲日婷婷| 日本视频一区二区三区观看 | 色婷婷综合五月在线观看| 在线免费看黄国产精品| 国产三级在线观看官网| 国产日韩欧美第一区二区| 国产裸体美女永久免费无遮挡| 日本人体精品一区二区三区视频| 免费黄色国产精品日更| 国产蜜臀大码av影院| 午夜福利片国产精品张柏芝| 欧美一区二区三区最新| 大鸡巴操白丝校花清纯小骚逼视频 | 正在播放干熟妇久久精品视频一本 | 久久精品国产亚洲av影片| 日韩欧美亚洲精品成人| 天天综合天天添夜夜添狠狠添| 国产女主播作爱在线观看| 正在播放干肥熟老妇视频| 果冻传媒精选麻豆二区| 麻豆国产成人AV高清在线观看| 高潮颤抖大叫正在线播放| 亚洲最新尤物在线视频| 久久99这里只有免费费精品 | 俄罗斯美女扒开B口B毛男人玩吗| 亚洲一区国产午夜福利| 国产白嫩无套视频在线播放蜜桃| 成人福利视频免费观看| 97人妻午夜福利视频| 美女被大鸡巴插男内射欧美| 国产一区二区三区二区| 一区二区三区激情在线观看 | 美女扒开大腿让人桶免费看| 久久洲Av无码西西人体| 未满十八网站在线观看| 无码少妇一级av片在线观看| 麻豆精品人妻一区二区三区99| 强d乱码中文字幕熟女免费| 五月天丁香花婷婷狠狠热| 扒开老女毛荫荫的黑森林视频 | 中文字幕一区二区三区乱码人妻| 麻豆成人久久精品二区三区红| 国产日韩欧美另类专区| 成年人大片在线观看视频| 看日逼的看日逼的看日逼的看日逼| 麻豆精品人妻一区二区三区99| 亚洲男人天堂在线免费| 91福利国产在线观看香蕉 | 色综合人妻中文字幕精品系列| 成年美女黄网站大片免费| 欧美91精品一区二区三区| 国产麻豆剧传媒免费观看| 色综合人妻中文字幕精品系列| 精品一区二区三区毛片无码18 | 久久精品亚洲国产日韩| 国产日韩精品专区免费| 九九热6这里只有精品视频| 国产在线视频一区二区不卡| 国产一卡二卡精品乱码| 亚洲av伊人久久综合性色| 国产在线小视频免费观看| 国产免费一区二区三区最新6 | 乱淫一区二区三区麻豆| 久久精品国产在热亚洲| 大鸡巴插学生妹骚逼视频| 欧美日韩一级二级三区高清视频| 欧美色综合视频一区二区三区 | 男人把女人捅到爽爆免费视频| 人妻精品久久一区二区| 五月天丁香啪啪激情综合| 美女无套内射粉嫩99内射| 亚洲一区二区三区精品久久av| 正在播放干熟妇久久精品视频一本 | 亚洲精品制服丝袜中文字幕乱码| 欧美激情网页一区三区| 日本女同学在工作里小媳妇操逼逼| 凹凸国产在线观看高清画质| 艳妇臀荡乳欲伦69调教视频 | 美女主播视频福利一区二区| 国产在线观看一区二区三| 久久999国产高清精品| 无码av一区二区三区四区| 欧美a级黄色中文字幕手机在线 | 久久久人妻国产精品一区| 丰满少妇被猛烈进入无码蜜桃| 一本色道久久88综合日韩| 亚洲AV无码专区片在线观看 | 日本一区二区免费在线不卡| 好吊视频免费在线观看| 大鸡巴插进小穴的视频吴梦梦| 黑人巨大精品欧美完整版| 国产免费成人在线观看视频| av日韩精品在线播放| 97精品在线全国免费视频| 国产一区二区三区三洲| 欧美日韩国产福利在线观看| 亚洲国产精品一区二区三区四区| 久久99这里只有免费费精品 | 天天久久狠狠伊人第一麻豆| 亚洲精品在线韩国日本| 99热这里只有是精品7| 国产精品久久久久久久第一福利| 九九在线精品亚洲国产涩爱| 午夜av成人在线观看| 菠萝菠萝蜜在线视频在线播放| 黑人巨大精品欧美完整版| 美国女人大兵的大鸡巴操男人的逼| 女性下体被男性猛进猛出的视频| 日本精品一线在线观看| 好吊妞人成视频在线观看| 欧美黄色成人在线电影| 强奸爆操女白领嫩穴好紧| 女自慰喷水大学生高清免费看| 深夜福利一区二区在线观看| 欧美系列一区二区三区在线播放| 在线观看欧美激情第一页| 免费观看又色又爽又黄的| 亚洲精品不卡一二三区| 97久久精品国产精品青草| 中文字幕人妻少妇久久| 成人午夜福利视频网址| 亚洲最大色大成人av| av午夜精品一区二区三区| 美女被草视频免费网站| 成人免费淫片在线观看免费| 操 骚逼 骚逼 操骚逼 操骚逼| 青青国国产视在线播放观看91| 思思99热这里只有精品| 国产精品久久久精品免费 | av天堂天堂av日韩| 动态强干叉美女小穴视频| 未满十八禁止在线播放| 白白色手机免费在线视频| 男人大鸡巴插进美女逼里视频强奸 | 日韩精品av在线观看| 一区二区三区亚洲精品| 精品国产一区二区三区卡| 欧美日韩欧美性生活视频| 97人妻午夜福利视频| 92午夜福利在线视频| 四虎精品视频永久免费| 97精品伊人久久大香| 欧美超碰人人爽人人做人人添| 操逼激情破处大鸡吧插进| 国产日本草莓久久久久久| 精品国产福利盛宴在线观看| 无码a级毛片免費视频内谢| 亚洲日本乱码一区二区| 亚洲AV无码一区二区三区五月天| 欧美一级久久久久久国产| 日韩午夜一区二区三区| 米奇8888在线精品视频| 国产欧美又粗又长又爽| 嗯啊男人捅女人小穴视频| 色哟哟在线观看中文字幕| 日韩在线观看免费av| 中国一级毛片免费看视频 | 在线观看性生活免费看| 国产传媒第一页在线观看| 四虎永久在线精品视频观看| 91福利国产在线人成观看| 中文人妻熟妇精品乱又伧老牛在线| 日韩中文字幕视频一区| 曰本精品人妻久久久久久| 国产欧美精品久久99亚洲| 丰满少妇被粗大猛烈进人高清| 四虎亚洲中文在线观看| 十八禁网站免费在线观看| 性刺激特黄毛片免费视频 | 插烧女人屁眼视频在线观看| 人妻少妇被猛烈进入中出视频| 欧美精品国产成人综合亚洲| 国产精品久久久久久久第一福利 | 国产午夜福利导航在线| 美女被黑人鸡巴草的爱液狂溅| 中文字幕在线av电影| 99热精品在线观看首页| 黄色网色网色网色网色| 99国产精品国产自在现线| 社保交够15年可以辞职等退休吗| 大鸡巴厂长狂操女人的无毛小逼 | 国产91手机在线播放青青| 五十老熟女高潮嗷嗷叫| 黑人巨大精品欧美完整版| 日韩一区二区三区影片| 欧美日韩一区二区人妻| 欧美日韩激情在线一区二区| 久久国产综合尤物免费观看| 精品国产一区二区三区蜜殿最| 久久精品国产欧美电影| 国产亲近乱来精品视频| 日韩av在线播放免费观看| 国产白嫩无套视频在线播放蜜桃| 男人天堂一区二区av| 日韩精品无乱一区二区| 日韩一区二区三区免费视频| 国产精品久久久久久码| 天天干天天操天天射嘴里| 大鸡巴操美女骚逼嫩穴视频| 久久这里只有偷拍精品视频| 久久精品国产亚洲av影片| 青青河边草视频在线观看| 天天摸天天做天天爽婷婷| 亚洲人尤物视频在线观看| 久久婷婷好好热日本手机| 中文字幕亚洲欧美日韩在线不卡| 日本黄大片538视频| av男人在线东京天堂| 久久热福利视频就在这里| 亚洲日本乱码一区二区| 91精品人妻一区二区蜜桃| 亚洲国产精品成人综合片| 亚洲免费视频区一区二| 免费观看拍1000线观看| 中文字幕国产不卡一区| 欧美精品国产成人综合亚洲| 久久精品人妻少妇区二区| 亚洲精品一二三区不卡| 免费 无码 国产在线观| 性生活免费在线观看视频| 我要看国产的日逼的视频| 综合成人欧美网日韩青椒网| 好吊妞人成视频在线观看| 不卡久久精品国产亚洲av不卡 | 91青青草原免费观看| 97激情在线视频五月天视频| 国产免费观看黄av片试看| 亚洲欧美另类丝袜在线| 青青草原在线视频首页网站| 五月婷婷六月丁香亚洲综合| 精品国产美女福到在线不卡| 隔壁人妻欲求不满中文字幕| 欧美成人高清视频性生活| 日韩精品视频观看专区| 国产在线小视频免费观看| 日本韩国美女久久午夜| 日韩在线观看免费av| 免费国产高清在线观看最新| 久久精品无码一级毛片温泉| av精彩天堂在线观看| 大鸡巴操女生视频男上女下式黑人| 色哟哟一区二区三区四区视频| 欧美日韩亚洲一区二区在线| 九九在线精品亚洲国产涩爱| 欧美一区二区三区爽爽爽 | 在线免费看片国产精品| 伊人久久综合大杳蕉中文无码| 夫妻性生活视频在线免费看| 五月天丁香啪啪激情综合| 亚洲精品九一国产九九蜜桃| 亚洲香蕉大尺码专区在线直播| 激情毛片av在线免费看| 一区二区不卡国产精品| 99国产精品黄色片子| 丰满人妻少妇被猛烈进入| 美日韩一级片欧美一级片| 亚洲一区二区三区网址| av日韩精品在线观看| 国产免费内射又粗又爽密桃视频| 亚洲av无码乱码国产精000| 黑人巨大精品欧美完整版| 亚洲最大色大成人av| 一起草视频网站在线播放| 久久999热这里的精品| 色偷偷的亚洲男人的天堂| 国产传媒小视频在线观看| 午夜老湿机福利免费观看| 日韩av高清不卡一区二区三区| 欧美日韩国产一二三四区永久在线| 玖玖资源网站最新网站| 日本高清一区二区三区高清视频 | 久久精品国产三级电影| 91久久精品美女高潮喷白桨| 大鸡巴插入少妇骚穴视频| 99国产精品九九视频免费看| 男人插女人鸡在线污视频观看| 国产日本亚洲一区二区| 成人一区二区三区在线观看| 两个奶头被吃高潮视频免费版| av永久网站在线观看| 日韩av中有文字幕在线观看| 国产裸体美女永久免费无遮挡| 国产日韩在线一二三区| 看男生和女生插小鸡鸡的软件| 国产在线观看黄av免费| 成年免费大片观看在线| 高清一区二区中文字幕| 五月婷婷六月丁香亚洲综合| 大奶女人被操逼操的崩溃| 国产女人av一级一区二区三区| 欧美亚洲精品激情视频网| 亚洲欧美国产专区在线观看| 亚洲黄色成人av在线电影| 情色中文字幕在线观看| 蜜臀在线观看免费视频| 亚洲精品制服丝袜中文字幕乱码 | 少妇厨房愉情理伦片视频在线观看 | 重磅泄露操鸡吧美女视频| 国产视频三区二区在线观看| 亚洲国产精品成av人| 色眯眯日本道色综合久久| 中文字幕一区二区人妻秘书| 亚洲一区国产午夜福利| 欧美日韩视频在线综合| 一区二区三区最新中文字幕| 草骚逼美穴骚逼美穴骚逼美穴骚逼| 成年女人午夜毛片免费视频| 动态强干叉美女小穴视频 | 午夜精品成人内射人妻| 久久999精品米奇久久久| 久久久久伊人亚洲最大av综合| 亚洲天堂av在线观看免费| 91在线免费在线观看| 国产熟女激情视频自拍| 日本高清中文字幕免费二区| 撕开奶罩揉吮奶头大尺度视频 | 在线播放国产精品自拍| 日日噜噜噜噜夜夜爽亚洲| 先锋影音在线资源91| 国产精品高清无遮挡网站| 看男生和女生插小鸡鸡的软件| 亚洲欧洲国产精品香蕉网| 中文字幕人妻熟女人妻av| 好吊妞人成视频在线观看| 操逼内射女生免费视频黄片| 中文字幕中文有码在线| 国产在线精品免费播放| 美国俄罗斯毛片一区二区| 美女被草视频免费网站| 亚洲欧美国产日韩专区| 大鸡巴暴草美女的小骚逼| 成人精品一区二区夜夜嗨| 成人国产激情自拍视频 | 免费黄色大片在线观看| 精品国精品国产av自在久国产| 欧美精品久久天堂久久精品| 国产亚洲综合一区二区| 亚洲国产日本韩国福利在线观看| 午夜伦理激情福利视频| 欧洲的大长鸡巴操日本小浪逼| 亚洲天堂自拍偷拍韩日美| 香蕉欧美在线视频播放| 一区二区三区激情在线观看| 91九色成人在线观看| 日本精品福利在线视频| 想看操真人老女人逼的视频| 91日本精品免费在线视频| 人妻少妇精品视频区二| 成年人午夜黄片视频资源| 国产日韩欧美第一区二区| 精品亚洲456在线播放| 欧美a级黄色中文字幕手机在线 | 丁香激情综合网激情五月| 精品人妻一区二区三区mp4| 日韩免费成人在线视频| 国产日韩一区二区不卡视频| 黄色顶级男和女性视频毛视频 | 大香蕉在线大香蕉在线大香蕉在线| 性生活免费在线观看视频| 韩国床震无遮挡免费视频| 日本人疯狂干大鸡巴爽歪歪视频 | 国产va免费精品观看精品视频| 草草影院黄色在线观看| 欧洲中文字幕日韩精品成人| 日本不卡在线视频二区三区| 精品久久久久久久大| 久久精品亚洲国产日韩 | 99久久精品国产成人综合| 亚洲国产欧洲综合997| 欧美熟妇另娄久久久久久 | 女人香蕉久久毛毛片精品| 韩国女主角男女裸体操逼鸡巴操逼| 18以上岁毛片在线播放| 亚洲欧美国产日韩专区| 白白色手机免费在线视频| 国产在线播放精品一区| 波多野结衣AV在线无码播放| 国产精品午夜久久久久久久密桃| 色欲永久无码精品一二三区| 亚洲精品国产欧美成人| 丰满人妻连续中出中文字幕在线| 激情国产AV麻豆凡V换脸| 国产精品91福利一区二区三区| 中文字幕人妻丝袜一区一三区 | 思思99热这里只有精品| 大鸡插黄在床上做运动不遮掩| 亚洲一区二区三区欧美在线观看 | 国产欧美日韩一区精品| 五月婷婷六月丁香激情综合网| 欧美国产大片一区视频| 国产成人久久精品麻豆一区| 亚洲日本一线产区二线区| 欧美美女真人全裸外阴大阴口日逼| 国产乱码精品一区二区三区麻一豆| 免费黄色国产精品日更| 国产在线精品免费播放| 三级网站一区二区三区| 久久免费看美女高潮视频| 欧美人妻一区二区三区88av| 国产欧美精品一区二区久久久| 97人妻午夜福利视频| 看免费国外大鸡巴操小骚逼 | 菠萝菠萝蜜在线视频在线播放 | 无码av一区二区三区四区| 天天操亚洲精品日韩欧美| 男人的天堂一级毛片视频| 99爱在线精品视频免费观看9| 哺乳一区二区久久久免费| 国产精品自在在线午夜精华在线| 男人抚摸亚洲女大学生的大胸| 女人毛逼毛逼毛逼毛片视频| 国产福利午夜精品视频| 99久视频在线观看免费| 国产超级碰碰人在线播放| 亚洲精品一区二区三区小| 鸡鸡插屁股视频日韩在线免费观看 | 亚洲一级毛片免费在线观看| 色综合人妻中文字幕精品系列| 在线播放免费人成日韩视频| 欧美情欲片一区二区三区| 国产裸体美女永久免费无遮挡| 女人逼需要大鸡吧干的视频| 日韩中文字幕在线视频免费观看| 饥渴少妇高潮露脸嗷嗷叫| 97精品视频在线观看| 国产日韩欧美另类专区| 久久天天躁拫拫躁夜夜AV| 蜜桃久久精品一区二区| 日韩情色电影中文字幕| 国产三级在线观看官网| 色综合色综合色综合天天上班| 激情文学婷婷六月开心久久| 正在播放女子高潮大叫要| 一本到中文无码AV一区| 99久久婷婷国产综合精品免费 | 国产一区日韩精品二区| 91福利国产在线人成观看| 蜜臀在线观看免费视频| 欧美一区二区三区 中文字幕| 大鸡巴插进小穴的视频吴梦梦| 91蜜桃臀久久一区二区| 91成人亚洲天堂高清| 亚洲国产精品免费线观看| 操爆白皙美女下面的骚逼视频| 日韩在线精品国产一区二区| 五月婷婷丁香激情对白一区二区| 日韩精品一区二区三区视频放| 女优日本中文字幕五十| 青青草青青草在线观看视频| 国产精品视频每日更新国产清纯| 一本在线视频中文免费看| 男人大丁丁射精AV汇编| 美女大奶子大鸡巴操逼喷水| 五月婷婷六月丁香深爱| 欧美精品久久久天堂一区| 一卡二卡精品在线免费| 男女互射视频在线观看| 国内老熟妇精品露脸视频| 强插少妇视频一区二区三区 | 在线观国产精品日韩av| 给我播放免费在线视频| 国产精品有码av在线| 男人大鸡巴插进美女逼里视频强奸 | 欧美三级经典影片视频| 午夜男女爽爽刺激视频在线观看 | 强奸爆操女白领嫩穴好紧| 加勒比东京热综合区一区二| 欧美日韩中文亚洲v在线综合| 亚洲国产日本韩国福利在线观看| 日韩精品视频观看专区| 韩国免费A级毛片久久不卡片| 国产鲜肉帅哥大鸡巴操美女逼内射| 亚洲一区二区懂色av| 啊啊啊逼逼好痒啊啊视频| 香蕉久久夜色精品国产不卡| 亚洲精品在线韩国日本| 丰满人妻连续中出中文字幕在线| 干黑丝袜美女的小骚穴影片| 日韩特黄特色大片免费看| 思思99热这里只有精品| 欧美特黄片在线免费播放| 国产中文成人精品久久久| 成人免费淫片在线观看免费| 91综合在线国产精品| 视频一区视频二区同事| 日本到在线高清视频观看| 高颜值午夜福利在线观看| 国产日韩欧美第一区二区| 精品久久国产蜜臀色欲69| 蜜桃99视频在线观看| 中文人妻熟妇精品乱又伧老牛在线| 五月天丁香婷婷一区二区| 91福利国产在线观看香蕉| 蜜臀视频免费国产在线视频| 日韩精品毛片在线看| 亚洲美女一区二区暴力吞精| 欧美高清精品视频在线| 欧美日高清视频在线观看| 亚洲色图视频中文字幕| 国产黄片一级二级三级| 夜夜躁日日躁狠狠久久av乐播| 日韩精品一区二区三区视频网| 国产美女极度色诱视频| 少妇中出中文字幕久久久| 国产精品青青爽在线观看| 米奇8888在线精品视频| 中文字幕有码视频推荐 | 91精品国自产拍老熟女露脸 | 国产中文字幕在线免费观看| 91午夜精品福利在线亚洲| 成人一区二区三区在线观看| 亚洲和欧洲一码二码区视频| 国产精品中文字幕日韩精品| 久久人人做人人妻人人玩| 久久久久久久久极品99| av在线播放亚洲天堂| 五月婷婷六月丁香激情综合网| 精品国产av一区二区三区蜜臀| 国产三级在线观看官网| 男人猛躁进女人免费播放视频| 亚洲国产精品毛片av在线下载| 日本肥老熟妇在线观看| 日本不卡二区在线观看| 国产成人久久精品麻豆一区| 十八禁网站免费在线观看| 97视频精品免费观看| 国产天堂av在线免费观看| 日韩成人a片一区二区三区| 国产欧美精品一区二区性色| 国产精品亚洲综合第一区| 国产人碰人摸人澡人视频| 女人香蕉久久毛毛片精品| 人妻少妇精品中文字幕av蜜桃| 免费日韩av网在线观看| 国产乱码精品一区二区三区播放| 给我播放免费在线视频| 日本一区二区三区精品视频在线| 日本人体精品一区二区三区视频| 色欲永久无码精品一二三区| 无码国内精品人妻少妇蜜桃视频| 韩国女主角男女裸体操逼鸡巴操逼| 男生大肉捧插女生的视频| 黑人爆操中国明星美女小嫩逼视频 | 黄片视频免费在线观看播放 | av亚洲中文字幕精品| 这里都是精品熟女内射| 日韩三级中文字幕不卡| 欧美日韩国产一区二区的| 亚洲一区精品二人人爽久久| 亚洲成人av免费在线看| 玖玖热在线视频免费观看| 久久综合中文字幕一区二区| 色哟哟一区二区三区四区视频 | 亚洲av日韩av高清在线播放| 操逼肥的一线天白虎女人| 国产人成91精品免费观看| 看免费国外大鸡巴操小骚逼| 最近中文字幕国产精品| 男生把坤巴放进女生屁屁| 公交车上猛烈的进入的a片视频 | 日本东京热av在线观看| 国产欧美精品久久99亚洲| 大奶女人被操逼操的崩溃|