操逼啊口爆啊rrr中途啊免费-中文字幕av网一区二区-中文字幕久久精品波多野结百度-国产三级视频在线观看

雙極性晶體管

二極管

ESD保護、TVS、濾波和信號調(diào)節(jié)ESD保護

MOSFET

氮化鎵場效應(yīng)晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應(yīng)用認(rèn)證產(chǎn)品(AEC-Q100/Q101)

IAN50019 - Thermal boundary condition study on MOSFET packages and PCB substrates

This interactive application note explains the boundary condition study performed to evaluate the thermal performance of various Nexperia MOSFET Packages and PCB Substrates. The results from measurements and simulations obtained in the study led to the creation of PCB Cauer models, which users can utilise in circuit simulators alongside Nexperia electrical and precision electrothermal models.

Author: Christopher Liu, Applications Engineer, Manchester

This interactive application note contains an embedded Cloud based simulation to augment the text.

To open the embedded simulation, simply hover over the simulation image. Left click anywhere in the graphic area once the central play button changes in colour. This opens the schematic in the Cloud environment. See the interactive application note tutorial page for more details on how to use the simulations.

See related application note: AN90013 LFPAK MOSFET thermal design guide

 

Download AN50019

1. Introduction

Power MOSFETs provide efficient conversion and supply of power in a wide variety of automotive, industrial and consumer applications. However, no MOSFET is 100% efficient and as such they exhibit three types of power losses during normal operation:

  • Switching losses during the transitional phase, see Fig 1.
  • Conduction losses during the on-state, see Fig 1.
  • Avalanche losses if breakdown voltage is exceeded when driving an inductive load, see Fig 2.

Figure 1. MOSFET turn-on waveforms


Figure 2. MOSFET turn-off avalanche waveforms

The culmination of these power losses can result in thermal overstress and failure of the MOSFET if not sufficiently accounted for in a PCB design. Therefore, it is necessary to consider thermal analysis during the design cycle to ensure the MOSFET does not exceed its maximum operating temperature. The parameter which gives the user the most relevant indicator of MOSFET thermal performance is known as the junction to ambient thermal resistance, Rth(j-amb).

Nexperia receives a lot of requests regarding Rth(j-amb) and unfortunately there is no single value which can be applied to MOSFETs to address all scenarios and applications that it would be used in. Therefore, Nexperia undertook a parametric study using various measurement setups and simulation tools to see the variability in Rth(j-amb) under different conditions. This resulted in the creation of PCB Cauer models, where users can experiment in a “plug-in and play” fashion to see which PCB is most suited to handle the power dissipated in their application. These models are free to use in Siemens PartQuest as shown in Simulation 1.

Simulation 1. PCB cauer models

This (interactive) application note first aims to explain the nature of heat dissipation and then the evaluations made on MOSFET thermal behaviour across various different package types and scenarios.

2. Thermal resistance, Rth

2.1. Junction to mounting base, Rth(j-mb)

Thermal resistance is a measure of how difficult heat finds it to flow through a medium. This is often quoted between two physical points in a system. It is a one-dimensional parameter and is given by taking the temperature difference divided by the power dissipated between two point locations x and y, as seen in Equation 1.

(Eq 1)

The method of heat propagation within a MOSFET is conduction shown in Equation 2, as the transfer of heat from one solid medium to another solid. Further nformation on this topic can be found in Chapter 2.1.1  of AN90003 [1]. The rate of heat flow, Q, is dependent on:

  • Thermal conductivity, k (W/m2K)
  • Cross-sectional area, A (m2)
  • Initial location temperature, T1 (°C)
  • End location temperature, T2 (°C)
  • Distance between two point locations, x (m)

(Eq 2)

In the thermal characteristics section of a data sheet, the MOSFET’s transient thermal impedance curve and the thermal resistance junction to mounting base, Rth(j-mb), is always denoted by the manufacturer with units °C/W or K/W. This is an important parameter as it’s the dominant and least resistive path for heat to dissipate from the junction and out of the device via conduction. This is shown in Fig 3.

Figure 3. Diagram showing the heat flow between junction and mounting base

A lower Rth(j-mb) value is more desirable when comparing within a specific package type e.g LFPAK56, as it suggests the junction will produce a smaller rise in temperature per unit power that is dissipated.

However, unless all the heat is sunk at the boundary of the mounting base a lower Rth(j-mb) may not always produce a lower temperature response when comparing against different package types e.g LFPAK56E vs LFPAK88. This is because in reality, heat is a three-dimensional phenomenon. Referring to Equation 2 for thermal conduction, the rate of heat flow is directly proportional to the cross-sectional area in addition to being inversely proportional to the distance it travels through.

Should an LFPAK56E and LFPAK88 of the same die size be mounted on the same type of PCB, the LFPAK88 would result in a lower Rth(j-amb) than the LFPAK56E. This is despite the LFPAK88 having a larger Rth(j-mb) than the LFPAK56E. The larger surface area of the LFPAK88 mounting base has a greater effect than the thinner LFPAK56E drain tab in improving the rate of conduction, thus resulting in a smaller temperature increase. This leads us into the importance of Rth(j-amb) parameter.

2.2. Junction to ambient, Rth(j-amb)

Heat transfer does not stop at the boundary of the mounting base and usually takes around 50 – 100 microseconds to start flowing out of the mounting base, depending on the die and drain tab thickness of the MOSFET. If power is continually supplied, the MOSFET will eventually reach a steady-state temperature as heat is dissipated via conduction and thermal radiation into the ambient, from which Rth(j-amb) can be obtained. Since Rth(j-amb) provides a much more informative reflection of a MOSFET’s thermal performance in an application, why is it that sometimes the parameter is not shown on manufacturer data sheets? The issue with Rth(j-amb) is that it’s a boundary condition dependent parameter. This means that it depends on characteristics, some of which are shown in Fig 4 such as:

  • PCB size and material properties
  • Number, area and thickness of copper planes/traces
  • Thermal vias
  • Thermal Interface Material (TIM)
  • External heatsinks
  • Free or forced cooling

Figure 4. Diagram showing the various factors that can affect Rth(j-amb) for a MOSFET, red arrow showing the dominant path for heat to flow from junction to ambient

Therefore, the conditions which affect this thermal resistance value is in the hands of the designer and not the MOSFET manufacturer. Some manufacturer datasheets do include conditions to which Rth(j-amb) was obtained for a MOSFET. Examples of these conditions may originate from standards outlined in JESD51-5 and 51-7. Alternatively, manufacturers may set their own proprietary conditions to obtain a certain Rth(j-amb). Despite stating the conditions, the Rth(j-amb) value may not be of relevance to designers in the first place. For instance, a value obtained on a 2s2p PCB measuring 114.3 mm x 76.2 mm in accordance with JESD51-7 may not apply for a designer’s application where the PCB needs to be small enough to be part of a wearable item. Hence, any Rth(j-amb) value found on a datasheet should only be treated as an indication to thermal performance for a particular application.

To help designers who are in their initial stages of a design cycle and have no finalised prototype or PCB layout, Nexperia undertook a study through a series of measurements on different PCBs, package types and scenarios. The process and results will be explained in the subsequent section and hope to give insight into the thermal performance of various MOSFET packages.

3. Obtaining MOSFET thermal performance data

3.1 Thermal measurements – cold plate

Thermal performance data can be obtained in a number of ways. The transient dual interface method outlined in JESD51-14 [2], provides a great setup to show how much power a MOSFET is able to dissipate if a designer is able to provide a sufficient level of cooling to the system. Prior to transient thermal measurements, the forward voltage drop (VF) over the MOSFET body diode needs to be measured over several different temperatures. An example of this is given in Fig 5. The gradient of the line gives the temperature coefficient of the silicon die with units V/°C or V/K and enables the temperature of the junction to be recorded for a given sensing current.

Figure 5. MOSFET body diode VF as a function of junction temperature when a fixed level of current is applied

Subsequently, heating current is applied and thermal measurements are then taken on the liquid-cooled cold plate with the use of carbon paper as a thermal interface material. This was used to improve thermal contact between PCB and cold plate by reducing microscopic pockets of air which contribute to the overall thermal resistance. The cooling curve is then transformed into a transient thermal impedance curve and the Rth(j-amb) value can be seen once the curve reaches a plateau, signifying steady-state. Fig 6 shows an example of a DUT on the liquid-cooled cold plate held in place with pneumatic pistons to apply force on each corner of the PCB.  Below is the setup used for cold plate measurements and Table 1 shows a list of Rth(j-amb) results that were obtained using FR4 PCBs:

  • Standard FR4 PCB measuring 70 mm x 50 mm x 1.6 mm
  • 1” sq top/multi-layer copper planes
  • 2 oz/ft2 (70 µm) copper thickness
  • 25 µm plated thermal vias for multi-layer PCBs, 1.2 mm x 1.2 mm array across copper planes
  • Sensing current: 0.1 A


Figure 6. Exploded diagram of a MOSFET mounted on 70 x 50 x 1.6 mm PCB clamped using a pneumatic system onto a liquid-cooled cold plate

Table 1. Rth(j-amb) measurement results when PCB underside is under constant cooling on cold plate
Rth(j-amb) cold plate measurements (K/W)
Substrate LFPAK33 LFPAK56D LFPAK56 LFPAK88
FR4 1-layer 21.2 25.0 16.7 9.8
FR4 2-layer 13.1 10.1 7.4 4.8
FR4 4-layer 9.7 9.9 5.6 3.9
IMS 6.0 6.4 3.5 2.1

From Table 1, a significant decrease in thermal resistance is observed by using a 2-layer PCB compared to single layer PCB. This is because the thermal vias provide a path of low thermal resistance for heat to be sunk by the cold plate via conduction. If there were no thermal vias included in the multi-layer PCBs, the full extent of constant cooling would not be applied by the PCB and the Rth(j-amb) values would remain similar to that of the single layer PCBs. Further increasing the number of copper layers also decreases the overall thermal resistance across all package types in conjunction with vias. This is because the increased copper content allows for additional low thermal resistance paths to evenly distribute heat across the PCB to be sunk by the cold plate. It's also seen that using Insulated Metal Substrate (IMS) PCBs made from aluminum, provides a path of even lower thermal resistance for heat to dissipate into the cold plate for all packages.

3.2 Thermal measurements in still-air

Should a manufacturer want to provide Rth(j-amb) example on the data sheet, a commonly used procedure is outlined in JESD51-2 [3]. Instead of a liquid-cooled cold plate, the MOSFET is left to cool under natural convection whilst mounted on a PCB in an enclosure measuring 305 mm x 305 mm x 305 mm (1 ft3) as seen in Fig 7. Cooling under natural convection is a commonly used setup and the results should give close indication to how a MOSFET would behave thermally in a large range of applications without cooling fans or heat exchangers.

Figure 7. Example of a DUT within an enclosure to evaluate Rth(j-amb) under still-air

To evaluate the thermal behaviour of MOSFETs cooled under natural convection, the same set of PCBs were measured in the enclosure with the use of 0.01 A sensing current as opposed to 0.1 A for the cold plate measurements. This was done to reduce the effect of heat from the sense current from influencing the recordings. Therefore, remeasuring the MOSFET body diode VF was needed to get the temperature coefficients of the packages using the smaller sensing current. This is because VF is dependent on temperature and the smaller sensing current produces less heat in the junction, hence requiring a higher VF to push current from source to drain. Table 2 shows the Rth(j-amb) results from measurements in still-air.

Table 2. Rth(j-amb) measurement results when PCB underside is suspended in still-air
Rth(j-amb) still air measurements (K/W)
Substrate LFPAK33 LFPAK56D LFPAK56  LFPAK88
FR4 1-layer 48 49 42 36
FR4 2-layer 41 37 36 32
FR4 4-layer 36 36 34 30
IMS 16 16 13 12

From Table 2, it is seen that the overall thermal resistance of all package types is much higher in the absence of a constant cooling source in the system. Without cooling applied, the composition of the PCB is dominant in determining the overall thermal resistance. Again, the inclusion of more copper planes and thermal vias can decrease the Rth(j-amb) for all the devices. This is because it allows heat to conduct and distribute more evenly throughout the PCB, before being released into the ambient via convection and slight amounts of thermal radiation. Thermal measurements under natural convection show that the gap between the thermal performance of smaller and larger packages become reduced if the PCB design incorporates more copper area, thermal vias and high conductivity materials.

3.3. Thermal simulations – Computational Fluid Dynamics (CFD)

CFD is a highly useful and essential tool when it comes to analysing MOSFET thermal performance. It can offer a multitude of analysis options, which can give a plethora of information to the user for a wide range of designs and setups. Conditions such as fixed temperatures, free and forced cooling can also be applied to emulate real-world scenarios depending on how complex the user wants the simulation to be.

CFD can be more preferable compared to transient thermal measurements during the initial design iterations of a PCB. If the user is able to refine a simulation against a known power dissipation on a known PCB, they can have high confidence in simulation results from other designs with different copper layers and areas without the need to order additional prototype PCBs, saving time and cost. The extent of detail offered by CFD then becomes limited to what scenarios the user is able to create.

3.4. Cumulative Structure Functions - measurements vs. simulations

In this study, we have managed to successfully align CFD simulations with transient thermal measurements across a range of packages and substrate types. This was done through evaluating data from cumulative structure function graphs as shown in Fig 8.

Figure 8. Example of a cumulative structure function graph

The cumulative structure function is a sum of all thermal resistances and thermal capacitances within the system. The graph plots thermal capacitance against thermal resistance as heat is dissipated from the junction (origin) and travels into the ambient, which tends to infinite thermal capacitance. Each material or medium heat travels through has a particular thermal resistance and thermal capacitance. Hence, the change in gradients at different locations in the graph signifies heat leaving the boundary of one medium and entering into another.

The cumulative structure function can be transformed into a type of RC network known as a Cauer model, a simplification of which is shown in Fig 9.

 

Figure 9.  Simplified RC Cauer network representing the thermal behaviour as heat flows from junction to ambient

Regarding the comparison between measurements and simulations, Fig 10 shows an example of an alignment made between measurement and a calibrated simulation for LFPAK33 on FR4 1-layer PCB.

Figure 10. Cumulative structure function comparison made on LFPAK33 on FR4 1-layer PCB

In the region below 1 K/W and 0.01 J/K, the curves represent the heat that is flowing from the junction to mounting base and the long shallow gradient after 1 K/W, signifying relatively high thermal resistance, indicates heat flowing into the PCB. The closeness between measurement and simulation means that we were able to model the heat flowing within the MOSFET with a high degree of precision. The simulation process was then replicated for all the different packages and PCB types for constant cooling and natural convection scenarios with success.

4. Thermal models in circuit simulators

4.1. MOSFET models

SPICE and VHDL based circuit simulators are widely used for thermal analysis in addition to electrical analysis. This is done through the use of lumped parameter models, where electrical terms can be used to represent heat flow in a circuit. Foster or Cauer models, otherwise known as RC thermal models, can represent the temperature response of a MOSFET through a network of thermal resistances and thermal capacitances. If a user is able to obtain the power loss profile from the electrical circuit, it can be used in the current source of an RC model. An example of which is displayed in Fig 11.

Figure 11. Example of a MOSFET Cauer model with 5 RC networks

RC models can be generated through curve fitting algorithms and mathematical transforms with excellent alignment to transient measurements and calibrated CFD simulations. Further information can be found in application note AN11261 RC Thermal Models [4].

In addition to electrical models, Nexperia has an ever-expanding portfolio of 5-pin Precision Electrothermal Models (PETs) shown in Fig.11. PETs build upon what is offered by standard RC models. These models have two additional pins, revealing junction temperature and mounting base temperature for the user to connect or probe. These models offer improved accuracy over legacy electrical models as the electrical behaviour can change due to MOSFET self-heating.

Figure11. Example of a LFPAK56 5-pin Precision Electrothermal Model

4.2. PCB models

As explained previously, heat does not stop at the boundary of a MOSFET and will exit into the PCB and ambient in an application. For a long time due to the complexity and variance of Rth(j-amb), there was no availability of PCB thermal models. Designers would need to estimate a characteristic thermal resistance and thermal capacitance of the PCB to connect in series with the MOSFET RC model to give an estimated steady-state thermal response. Any forced cooling in the system or additional RC networks would be very difficult to estimate given the many environmental variables that can be present.

During this study, Nexperia managed to collate a range of thermal data across all packages from measurements and calibrated CFD simulations. Through the use of curve fitting algorithms and calculations, the mounting base to ambient thermal resistance was able to be derived to create PCB Cauer models. Cauer models were chosen over Foster models, as each node bears physical significance to a position in the model.

Since each node of a Cauer model corresponds to a location within the physical build of the MOSFET and PCB, the position at which Cauer models are connected matters. Hence, PCB Cauer models should be connected after the MOSFET Cauer model. In addition, each MOSFET can only be connected to a single PCB Cauer model as they cannot account for thermal coupling between devices. If there are multiple MOSFETs in a setup, they will each need their own PCB Cauer model. An example of a MOSFET and PCB Cauer connection is shown in Fig. 12

Figure 12. Example of an RC thermal model, with discrete MOSFET and PCB Cauer connected in series

PCB Cauers were created across several package types, substrates and both for constant cooled and natural convection scenarios. The reason why PCB models are package specific is due to the differing rates of heat flow experienced by smaller and larger devices of different mounting base areas, as explained previously with Equation 2. For example, the PCB used for a LFPAK88 device can disspiate more power than an identical substrate used for a LFPAK33.


Figure 13. Comparison between circuit simulation and measurements, showing the steady-state thermal resistance of LFPAK88 on PCBs clamped to a constant cooled cold plate

After their creation, these Cauer models then underwent validation against real measurements in a circuit simulator and from Fig 13, they are seen to bear close resemblance to each other. This demonstrates that the PCB Cauer models are able to provide precise and rapid estimations of MOSFET thermal behaviour. This is a huge advantage and reduces the need for designers to perform physical measurements or complex CFD simulations that either require physical prototypes and heavy computational resources. Nexperia intends to expand the library of PCB Cauer models to cover more PCB types to further aid designers in the future.

7. Summary

This interactive application note has shown the huge variability of the parameter Rth(j-amb) and the challenges faced by design engineers to ensure applications can cope with thermal losses. The study has shown that if a designer is able to decrease the thermal resistance of the PCB through methods such as increasing copper area, thermal vias and using high conductivity materials, smaller MOSFETs can exhibit similar thermal performance to larger MOSFETs under natural convection.

Device level thermal performance is readily available from manufacturers. However, the thermal performance of a MOSFETs can vary hugely in different applications and product designs. This study was initiated with the intent to help designers in their initial design phases where PCB layout and construction is not yet known. The intention was to give users precise thermal estimation tools that are easily accessible and easy to use compared to lengthy measurement and CFD simulation methods.

From this study, Nexperia has managed to create a library of PCB Cauer models across several package types for constant cooled and natural convection scenarios to show the user the variability of thermal performance depending on user design. The results of which aim to streamline the thermal design process and decrease the time taken for designers to create new products. These PCB Cauer models are free to access on Siemens PartQuest along with Nexperia electrical and Precision Electrothermal Models.

A PartQuest embedded Cloud simulation was used in this interactive application note.

References

[1] AN90003, LFPAK MOSFET thermal design guide, Nexperia.

[2] JESD51-14, Transient Dual Interface Test Method for the Measurement of the Thermal Resistance Junction-to-Case of Semiconductor Devices with Heat Flow Through a Single Path, JEDEC SOLID STATE TECHNOLOGY ASSOCIATION.

[3] JESD51-2A, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air), JEDEC SOLID STATE TECHNOLOGY ASSOCIATION.

[4] AN11261, RC thermal models, Nexperia.

Page last updated 15 April 2024.

 

女人香蕉久久毛毛片精品| 四虎精品视频永久免费| 男人捅开女人的逼国语对白| 天天摸天天做天天爽婷婷| 日本一区二区免费在线不卡| 国产一级性生活片免费观看| 17岁日本免费完整版观看| 国产一卡二卡精品乱码| 日韩爱爱视频在线观看| 亚洲精品国产成人综合免费| 正在播放国产无套露脸视频| 快插我的逼逼里好爽的免费视频| 亚洲理论中文在线观看| 日韩精品少妇专区人妻系列| 日本精品一线在线观看| 在线播放国产精品自拍| 看免费国外大鸡巴操小骚逼 | 嗯啊不要用力操逼视频cable| 这里都是精品熟女内射| 啊我要吃大鸡巴 插到骚逼里好大| 国产在线观看黄av免费| 欧美日韩国产成人高清视频 | 搡女人真人视频不用下载| 国产精品自在拍在线拍| 欧美日韩艺术电影在线| 无码无羞耻肉3d动漫在线观看 | 嗯啊啊大鸡巴快用力肏我视频| 天堂av一二三区在线播放| 色吊丝最新永久免费观看| 美女扒开屁股让男人桶大奶子骚逼| 激情国产AV麻豆凡V换脸| 人妻少妇被猛烈进入中出视频| 全部免费特黄特色大片看片| 亚洲大尺度无码无码专线一区| 伊人天堂午夜精品草草网| 国内少妇人妻精品视频| 麻豆成人久久精品二区三区红| 美女无套内射粉嫩99内射| 97人妻午夜福利视频| 久久婷婷好好热日本手机| 亚洲一区二区三区中文| 日日摸夜夜添夜夜添日韩| 欧美逼逼一区二区三区| 大鸡巴抽插女人骚逼视频| 亚洲最新尤物在线视频| 久久精品美国亚洲av伦理| 太大太粗好爽受不了视频| 亚洲精品一区二区成人精品网站| 无码少妇一级av片在线观看| 中文字幕国产不卡一区| 国产精品va在线观看无| 国产成人无码区免费AV片蜜臀| 国产蜜臀大码av影院| 国产区av一区二区三区| 日本熟妇内射一区二区| 小骚货被打桩啊啊骚叫视频网页| 一卡二卡精品在线免费| 女性下体被男性猛进猛出的视频 | 国产精品欧美精品日韩精品| 亚洲一区日韩二区精品| 视频一区精品中文字幕| 激情一区二区三区四区| 91豆麻精品91久久久久久 | 亚洲精久久久久久无码精品| 久久精品国产欧美电影| 亚洲国产日韩欧美综合在线| 国产欧美日韩一区精品| 国产视频久久久久久久久久久| 肉棒插小穴视频你懂得分享| 久久免费看美女高潮视频| 亚洲av一区一区二区三| av精彩天堂在线观看| 看中文字幕一区二区三区| 99国产欧美久久久精品蜜桃 | 成人性爱大阴茎视频高甜| 欧美日韩欧美性生活视频| 国产精品自在在线午夜精华在线| 韩国女主角男女裸体操逼鸡巴操逼 | 日日噜噜噜噜夜夜爽亚洲| 草骚逼美穴骚逼美穴骚逼美穴骚逼 | 久久久久久久久久久久性高潮| 强奷漂亮的夫上司犯在线观看| 一级做a爰片久久毛片毛片| 绿帽娇妻在卧室疯狂的呻吟| 久久狼精品一区二区三区| 国产农村av对白观看| 精品一区二区三区久久| av在线播放亚洲天堂| 久久精品国产三级电影| 操白虎护士小骚逼的视频| 久久久久精品午夜理论片| 日本免费一区二区三区视频在线播放| 日韩中文字幕av电影| 欧美日高清视频在线观看| 日韩欧美一级a特黄大片 | 午夜视频国产一区二区三区| 久久精品成人无码观看56| 激情国产AV麻豆凡V换脸| 日本精品福利在线视频| 91精品久久午夜大片| 草欧美女高中生的大逼喷水高清| 久热热久这里只有精品国产| 91性高久久久久久久久久久| 我要看外国女生操逼逼的视频| 五月天丁香啪啪激情综合| 在线观国产精品日韩av| 日韩中文字幕在线视频免费观看| 国产性色av一区二区| 男生鸡巴操女生逼逼视频。 | 国精产品一品二品国精品| 加勒比一道本在线观看| 强奷漂亮的护士中文字幕| 草欧美女高中生的大逼喷水高清 | 亚洲精品第一页在线观看| 99精品视频看国产啪视频新| 天天综合天天添夜夜添狠狠添| 国产三级精品在线不卡| 99国产精品九九视频免费看| 香港三级日本三级五月婷| 国产日韩精品专区免费| 色婷婷婷丁香亚洲综合| 啊用大鸡巴操骚逼逼视频| 日韩精品av在线观看| av日韩免费在线观看| 中文字幕日韩精品免费看| 国产日韩欧美亚洲专区| 太大太粗好爽受不了视频| 91精品人妻一区二区蜜桃| 日韩一区二区三区免费视频| 七月婷婷精品视频在线观看| 亚洲熟妇熟女久久精品一区| 成年大片在线免费播放| 操逼啊口爆啊rrr中途啊免费| 国产黄色网页在线观看| 香港三日本三韩国三欧美三级 | 亚洲av永久无码青青草原 | 男女互射视频在线观看| 国产精品国产三级国产av闹| 伊人久久综合大杳蕉中文无码| 日韩一区二区三区影片| 污污污视频在线观看免费视频 | 亚洲国产精品成av人| 欲求不满人妻av中文字幕| 日韩 有码 中文字幕 在线| 国产日韩一区二区不卡视频| 在线观看亚洲欧洲精品| 97激情在线视频五月天视频| 国产高清无码在线一区二区| 操白虎护士小骚逼的视频| 国产美女91精品在线观看| 春色校园激情综合另类| 青青草青娱乐免费在线视频 | 动漫无遮羞视频在线观看| 亚洲精品不卡一二三区| 国产一级a级高清性较视频| 伊人久久大香线蕉亚洲日本强| 亚洲成人自拍在线视频| 国产午夜福利导航在线 | 深夜欧美福利在线视频| 大鸡巴操大人体逼的视频 | 欧美日韩亚洲一区二区在线| 美女高潮潮喷冒白浆免费视频| 一区二区三区婷婷中文字幕| 国产精品久久av麻豆| 在线免费看黄国产精品| 美女扒开大腿让男生捅高潮的视频| 日本人妻在线播放一区| 亚洲熟妇v一区二区三区色堂| 亚洲热女乱色一区二区三区| 一区二区三区在线观看日本| 日韩欧美亚洲精品成人| 日韩成人a片一区二区三区| 久久久精品国产精品久久| 成年大片在线免费播放| 国产一区二区三区尤物视频| 国产内射一级一片高清视频蘑菇| 亚洲中文字幕有码视频| 欧美亚洲精品激情视频网| 欧美日韩视频在线综合| 亚洲一级特黄大片婷婷| 人人爽人人澡人人人人妻| 久久精品成人无码观看56| 美女大奶子大鸡巴操逼喷水| 国产精品久久av麻豆| 国产精品我不卡在线观看| 999国产精品永久免费视频| 亚洲av不卡一区二区不卡| 91成人精品国产免费男男| 婷婷精品国产一区二区| 五月天丁香婷婷一区二区| 夫妻性生活视频在线免费看| 成人国产激情自拍视频| 在线观看亚洲欧洲精品| 91久久精品一区二区三区色欲| 在线日韩人妻高清在线| 日日摸夜夜添夜夜添日韩| 丰满少妇被猛烈进入无码蜜桃| 亚洲精品成人中文字幕| 欧美日韩艺术电影在线| 自拍偷自拍亚洲一区二区| 国产传媒天美av一区二区三区| 欧洲的大长鸡巴操日本小浪逼 | 少妇一夜一次一区二区| 伊人久久大香线蕉亚洲日本强 | av在线播放亚洲天堂| 国产精品一区二区三区欧美| 中文字幕有码人妻在线| 亚洲伊人情人综合网站| 欧美激情网页一区三区| 99国产精品久久久久久| 欧美一区二区三区最新| 国产美女人喷水在线观看| 最近日韩精品视频在线| 自拍偷拍欧美日韩高清不卡| 男生大肉捧插女生的视频| 一级国产片在线观看免费| 欧美情欲片一区二区三区| av天堂天堂av日韩| 亚洲国产成人精品一区91| 白白色手机免费在线视频| 国产精品无码免费一级毛住a| 超碰人人爽爽人人爽人人| 未满十八禁止在线播放| 草欧美女高中生的大逼喷水高清 | 国产黄色污一区二区三区| 97人人视频波多野结衣蜜月| 男人捅开女人的逼国语对白| 久久亚洲天堂av丁香| 在线视频自拍日韩精品一区| 波多野结衣在线观看一区二区三区| 欧美日韩亚洲人妻在线| 成年人午夜黄片视频资源| 高跟翘臀后进式视频在线观看| 色婷婷综合五月在线观看| 91日本精品免费在线视频| 性生活AV在线直播成人社区| 欧美日韩中文精品在线| 在线亚洲91成人在线视频视频| 国产在线播放精品一区| 日韩在线观看免费av| 亚洲日本一线产区二线区| 中文字幕黄色综合网免费| 久久精品国产亚洲AV麻豆蜜芽| 黑人巨大精品欧美完整版| 蜜臀av国内精品久久久久久久久 | 国产一区二区四区在线观看视频| 黑人爆操中国明星美女小嫩逼视频| 强奷漂亮的夫上司犯在线观看| 五十老熟女高潮嗷嗷叫| 精品国产尤物黑料在线观看 | 成年免费A级毛片天天看| 淫荡女人水嫩嫩逼爆肏视频| 久久午夜av一区二区| 97精品国产自产在线观看永久| 日本剧情片在线播放网站| 大大大长屌姓交口交观看| 中文字幕一区二区三区乱码| 美女裸身被操视频免费观看| 精品国精品国产av自在久国产| 啊啊啊啊啊啊啊啊操我啊啊啊免费| 日本人妻免费在线观看| 果冻传媒精选麻豆二区| 国产精品三级精品国产50| 野花视频在线观看免费高清版 | 欧美久久国产精品性夜春夜夜爽| 在线播放免费观看AV片| 久久a天堂av福利免费播放| 美女很黄很黄的视频免费| 加勒比东京热综合区一区二| 久久精品美国亚洲av伦理| 国产日韩欧美亚洲专区| 成人日韩精品在线观看| 草草影院黄色在线观看| 日本在线不卡v2区| 97视频精品免费观看| 十八禁网站免费在线观看| 国产在线乱码一区二区三区潮浪| 国产精品中文字幕日韩精品| 最新推荐久久伊人久久久| 大肉棒猛插小逼太爽了视频 | 丝袜美腿亚洲一区二区| 男生使劲操女生下面视频国产 | 又大又长又黄又粗又爽的视频| 欧美日韩视频在线综合| 亚洲日本精品熟女视频| 17岁日本免费完整版观看| 丰满人妻av一区二区| 91人妻人人澡人人爽人人精品一| 91男厕偷拍男厕偷拍高清| 男人用力插美女下面的视频| 国产在线小视频免费观看| 美国妓女与亚洲男人交配视频| 中文字幕国产不卡一区| 日韩精品一区二区三区视频网| 国产精品青青爽在线观看| 中文字幕中文有码在线| 88v中文字幕熟女人妻一区| 国产主播在线一区二区| 亚洲嫩模三级片中文字幕| 亲少妇摸少妇和少妇啪啪| 精彩视频尤物视频在线| 国产一区二区精品播放| 成年人午夜黄片视频资源| 久久香蕉免费国产天天看| 男人大丁丁射精AV汇编| 久久久午夜福利免费视频| 视频一区中文字幕在线观看| 禁止的爱善良的小中文在线bd| 亚洲人人妻人人爽av| 插烧女人屁眼视频在线观看| 欧美大鸡巴猛插肥婆视频| 国产中文成人精品久久久| 一本到中文无码AV一区| 四虎国产永久免费视频| 国产精品免费av在线播放| 国产日韩精品专区免费| 美女很黄很黄的视频免费| 国产精品中文一区二区| 美日韩精品一区三区二区| 伊人2222成人综合网| 欧洲亚洲综合一区二区三区| 91人妻人人澡人人爽人人精品一| 亚洲精品一二三区不卡| 91人妻人人澡人人爽人人精品一| 亚洲精品一二三区不卡| 99国产精品久久久久久| 久久久亚洲国产精品一区| 女人逼需要大鸡吧干的视频| 亚洲嫩模三级片中文字幕 | 正在播放国产呦精品系列| 日韩欧美一级特黄大片| 国产精品超碰在线97| 日本一区二区免费在线不卡| 亚洲精品一区二区久久| 在线观国产精品日韩av| 人妻久久久一区二区三区视频 | 88v中文字幕熟女人妻一区| 99久久精品国产成人综合| 撕开奶罩揉吮奶头大尺度视频| 日韩在线观看免费av| 精品久久只有精品做人人| 日本剧情片在线播放网站| 中文字幕中文有码在线| 国产午夜精品一区二区三区视频| 欧美日韩另类精品激情| 欧美大鸡巴猛插肥婆视频| 午夜激情毛片在线观看| 日韩欧美亚洲国产精品幕久久久| 果冻传媒精选麻豆二区| 精品久久久久久久大| 51短视频精品全部免费| 久久婷婷好好热日本手机| 日本大黄毛逼自拍视频| 国产亲近乱来精品视频| 久久免费看美女高潮视频| 中国一级全黄的免费观看| 久热这里只有精品视频4| 国产免费观看黄av片试看 | 131美女爱做视频高清在线 | 自拍偷在线精品自拍偷蜜臀| 男人猛躁进女人免费播放视频| 国产婷婷综合在线视频中| 黄片视频在线观看国产| 精品人妻一区二区三区mp4| 丁香婷婷激情综合俺也去| 四虎亚洲中文在线观看| 中国无码AV看免费大片在线| 免费 无码 国产在线观| 国内综合视频一区二区三区| 成年人午夜黄片视频资源 | 亚洲国产欧洲综合997| 精品国产一区二区三区蜜殿最| 99久久精品99久久精品视频| 国产日韩一区二区不卡视频| 最新推荐久久伊人久久久| 亚洲欧洲中文日韩a乱码| 精品亚洲一区二区三区91| 91综合在线国产精品| 中文字幕av无码不卡二区 | 亚洲av永久无码青青草原| 又黄又爽有无遮挡的网站| 国产熟女激情视频自拍| 激情毛片av在线免费看| 日本高清视频不卡一区二区| 嗯啊不要用力操逼视频cable| 国语成人高清在线观看| 最新av国产在线播放| 操爆白皙美女下面的骚逼视频 | 中文字幕在线观看欧美日韩| 性生活在线免费观看小视频| 亚洲av永久无码青青草原| 大鸡巴插入少妇骚穴视频| 男人天堂一区二区av| 欧美日韩另类精品激情| 久久午夜无码鲁丝片午夜精品| 欧美大鸡巴猛插肥婆视频| 中国国语毛片免费观看视频| 久久精品 国产精品香蕉| 麻豆成人久久精品二区三区红 | 女性下体被男性猛进猛出的视频| av午夜精品一区二区三区| 太大太粗好爽受不了视频 | 男人大鸡巴日逼视频免费| 激情人妻av一区二区| 亚洲和欧洲一码二码区视频| 日本熟妇内射一区二区| 国产传媒天美av一区二区三区| 懂色av免费在线播放| 操白虎护士小骚逼的视频| 精品欧美激情一区二区三区| 日韩成人福利在线视频| 成人福利视频免费观看| 国产黄色性生活一级片| 亚洲欧洲日?国码久在线| 欧美三级经典影片视频| 国产麻豆剧传媒免费观看| 亚洲一级特黄大片婷婷| 国产精品九色蝌蚪自拍| 日本在线有码中文视频| 国内老熟妇精品露脸视频| 伊人久久综在合线亚洲| 免费观看又色又爽又黄的| 男生把坤坤戳进女生阴道里的视频 | 亚洲国产精品成av人| 国产女人喷浆抽搐高潮视频| 国产男女猛进猛出粗暴啊| 日本在线不卡v2区| 日韩的一区二区区别是什么| 大鸡巴插进小穴的视频吴梦梦| 卡通动漫一区二区综合| 国产高清白丝在线观看| 免费看美女私人部位的直播| 亚洲人尤物视频在线观看| 凹凸国产在线观看高清画质| 亚VA芒果乱码一二三四区别| 在线观看一区二区三区亚洲| 久久人妻久久人妻涩爱| 好吊视频免费在线观看| 91中文字幕在线永久| 欧美三级经典影片视频| 男女性情视频免费网站| 成人两性生活免费视频| 韩国三级一区二区三区| 九九热6这里只有精品视频| 国产精品无码免费一级毛住a| 国产超级碰碰人在线播放| 成年免费大片观看在线| 国产学生粉嫩在线观看在| 久久久久久久久极品99| 人妻中文av无码字幕久久| 久久香蕉国产线看观看6| 香港三级日本三级五月婷| 亚洲精品中文有码字幕| 国产性色av一区二区| 国产精品久久av麻豆| 一区二区三区亚洲免费看| 色综合久久久久久久激情| 男人把女人捅到爽爆免费视频 | 国产精品区第二页尤自在拍 | 性生活免费在线观看视频| 日本黄大片538视频| 乱淫一区二区三区麻豆| 在线观国产精品日韩av| 久久精品中文字幕一二三| 91九色成人在线观看| 超碰插你激情免费在线| 午夜老湿机福利免费观看| 欧美成人午夜福利影院| 大香蕉在线大香蕉在线大香蕉在线| 国内午夜精品视频在线观看| 精品日韩一区二区三区| 看操小日本女人乱伦逼视频| 成年免费A级毛片天天看| 国产女人喷浆抽搐高潮视频| 动漫无遮羞视频在线观看| 黑人精品一区二区三区av| 国产精品视频免费自拍| 国产黄色性生活一级片| 高颜值午夜福利在线观看| 国产精品亚洲综合图区| 欧美美女真人全裸外阴大阴口日逼| 国产欧美日韩综合精品二区| 99久久精品国产成人综合| 韩国成人台湾天堂在线| 97激情在线视频五月天视频| 欧美日韩国产福利在线观看| 正在播放国产无套露脸视频| 日韩美女一区二区三区在线观看 | 久久精品成人无码观看56| 成人精品一区二区三区不卡| 国产中文成人精品久久久| 国产精品中文一区二区| 中文人妻无码一区二区三区在线 | 欧美大鸡巴猛插肥婆视频| 男女性情视频免费网站| 亚洲欧洲中文日韩a乱码| 女生尿洞被男生捅的视频 | 国产非洲一区二区三区久久久久久 | 国产成人无码区免费AV片蜜臀| 视频一区精品中文字幕| 91九色成人在线观看| 风韵丰满熟妇啪啪老熟女| 人妻中文字幕有码在线视频| 啊啊啊啊啊啊啊啊操我啊啊啊免费| 亚洲欧美国产日韩专区| 国产郑州性生活免费| 国产午夜精品一区理论片| 国内揄拍国内精品久久| 最近日韩精品视频在线| 四虎国产永久免费视频| 男生鸡巴操女生逼逼视频。| 日本熟妇的诱惑中文字幕| 久久这里只有偷拍精品视频| 久久精品熟女亚洲av天美| 免费国产高清在线观看最新| 亚洲一区二区黄色录像| 国产福利一区二区三区| 蜜桃99视频在线观看| 亚洲av情网站在线观看| 国产午夜精品一区二区三区视频| 日本人疯狂干大鸡巴爽歪歪视频 | 韩国矫正暴力一级操逼网| 欧美日韩另类精品激情| 亚洲人尤物视频在线观看| 男生操女生小逼爽爽爽看看| 鸡鸡插进骚逼视频欧美996 | 欧美精品国产成人综合亚洲| 成人福利视频免费观看| av电影日韩在线播放一区二区三区| 国产日韩欧美亚洲专区| 日韩的一区二区区别是什么| 欧美日韩国产精品系列区| 91成人精品国产免费男男| 99国产精品国产自在现线| 国产自产拍午夜免费视频| 成人免费淫片在线观看免费| 在线观看日韩一区二区视频| 一区二区三区毛片国产一区| 欧美精品国产成人综合亚洲 | 日韩欧美一区二区不卡在线观看视频 | 国内老熟妇精品露脸视频| 国产99久久精品一区二区300| 精品亚洲456在线播放| 欧美日韩国产精品系列区| 亚洲av无码乱码国产精000| 日韩欧美一级精品久久| 亚VA芒果乱码一二三四区别| 色一情一乱一区二区三区码| 国产性色av一区二区| 人成网av精品自在自拍| 久久这里只有视频精品| 国产精品毛片高清在线完整版| 国产白嫩无套视频在线播放蜜桃| 美女主播视频福利一区二区| 麻豆成人久久精品二区三区红 | 国产午夜精品一区二区三区视频 | 中文亚洲精品在线观看| 男生把坤坤戳进女生阴道里的视频| 一级做a爰片久久毛片毛片| 久久精品国产99久久6动漫欧| 99国产欧美久久久精品蜜桃 | 亚洲欧洲一级av一区二区久久| 激情五月亚洲婷婷综合五月天| 米奇8888在线精品视频| 99久久午夜精品一区二区欧美 | 欧美一级片内射美女少妇| 五月天丁香花婷婷狠狠热| 日本视频一区二区免费在线观看| 毛片内射一区二区三区| 女自慰喷水大学生高清免费看| 超碰人人爽爽人人爽人人 | 国产免费一区二区三区最新6| 精品国产一区二区三区蜜殿最| 久久免费亚洲免费视频| 美味人妻手机在线观看| 亚洲精品成人中文字幕| 黄片视频免费在线观看播放| 欧美系列一区二区三区在线播放| 深夜欧美福利在线视频| 日本在线免费播放一区| 精品国产一区二区三区卡 | 巨乳av在线免费观看| 亚洲国产成人精品一区91| 色综合久久久久综合体| 日本老师做三 片乱码视频| 精品中文字幕一级久久免费 | 美女裸身被操视频免费观看| 淫荡小骚逼想要大肉棒视频| 成年女人午夜毛片免费视频| 欧美欧美欧美欧美在线| 小骚货被打桩啊啊骚叫视频网页| 学生妹被爽到高潮受不了视频| 国产精品欧美精品日韩精品| 亚洲国产精品成人综合片| 激情毛片av在线免费看| 91人妻人人澡人人爽人人精品| 香蕉av秘 一区二区三区| 性生活视频在线观看视频| 四虎精品视频永久免费| 人妻视频在线一区二区三区| 国产一二三在线不卡视频| 国产一区二区精品播放| 亚洲av情网站在线观看| 看日逼的看日逼的看日逼的看日逼| 中文字幕黄色综合网免费| 操 骚逼 骚逼 操骚逼 操骚逼| 操逼肥的一线天白虎女人| 人妻人人澡人人添人人爽桃色| 色婷婷亚洲一区二区在线| 大鸡巴插进小穴的视频吴梦梦 | 十八禁网站免费在线观看| 中文字幕亚洲精品激情欧美 | av午夜精品一区二区三区| 日韩亚洲在线观看视频| 七月婷婷精品视频在线观看| 免费国产高清在线观看最新| 最近日韩精品视频在线| 久久精品中文字幕一二三| 成人一区二区三区在线观看| 久久国产精品免费看小草| 精品一区二区三区毛片无码18| 国产精品va在线观看无| 韩国三级一区二区三区| 99久久婷婷国产综合精品免费| 国产精品一区二区亚洲推荐| 女人下面视频骚粉骚逼操| 亚洲少妇插进去综合网| 免费人成视频app不收费| 四虎永久精品在线免费| 国产黄色一级大片全集| 久久亚洲精品专区蓝色区| 91久久精品一区二区三区色欲| 久久精品av免费观看| 国产最新视频一区二区三区| 日本人疯狂干大鸡巴爽歪歪视频 | 日韩成人a片一区二区三区| 国产大陆日韩一区二区三区 | 男人用鸡巴插女人视频下载| 欧美日韩精品成人影院| 精品中文字幕一级久久免费 | 国产成人精品无人区一区| 亚洲色图偷拍一区二区| 撕开奶罩揉吮奶头大尺度视频| 97精品在线全国免费视频| 加勒比一道本在线观看| 精品国产高清中文字幕| 日韩精品女性三级视频 | 精品久久只有精品做人人| 十八禁真人无摭挡观看| 色噜噜狠狠狠综合曰曰曰 | 亚洲99精品一区二区三区| 动态强干叉美女小穴视频| 精品国产尤物黑料在线观看| 国产精品高颜值18禁| av午夜精品一区二区三区| 超大鸡巴操处女小骚逼免费视频| 欧美日韩精品成人影院| 亚洲无线码中文字幕在线| 十八禁网站免费在线观看| 国产日本草莓久久久久久| 淫妇小穴好爽啊出水视频| 国产日本亚洲精品在线一二三四| 亚洲AV无码一区二区少妇| 99国产成人精品视频app| 男人天堂一区二区av| 日本免费一区二区三区视频在线播放| 尹人大香蕉在线精品视频| 免费黄色国产精品日更| 亚洲欧美日韩欧美一区二区三区| 欧美超碰人人爽人人做人人添| 精品色欲久久久青青青人人爽| 太大太粗好爽受不了视频| 亚洲色图偷拍一区二区| 少妇厨房愉情理伦片视频在线观看| 欧美高清精品视频在线| 欧美日韩人妻精品一区二区在线| 国产午夜福利在线观看红色一片天| av在线播放亚洲天堂| 国产午夜福利在线观看红色一片天| 国产精品中文一区二区| 久久热福利视频就在这里| 中文字幕人妻少妇久久| 啊啊啊小穴好痒逼逼视频| 亚洲成人自拍在线视频| 色欲av一区二区三区精品| 免费观看又色又爽又黄的| 亚洲一区二区三区欧美在线观看 | 日本成年人大片免费观看| 97精品日韩欧美一区二区三区| 国产人妖免费在线观看| 亲少妇摸少妇和少妇啪啪| 大鸡巴厂长狂操女人的无毛小逼| 国产片高潮抽搐喷水免费| 国产乱码精品一区二区三区播放| 91久久国产精品91久久性色| 国产精品无码免费一级毛住a| 隔壁人妻bd高清中文字幕| 国产午夜精品一区二区三区视频| 国产高清白丝在线观看| 色综合久久久久综合体| 国产成+人+亚洲+综合| 国产夫妻自拍刺激视频在线播放| 黑人巨大精品欧美完整版| 亚洲日本精品熟女视频| 国产精品91福利一区二区三区| 国产亚洲综合一区二区| 国产av丝袜美腿视频一区| 日日噜噜噜噜夜夜爽亚洲| 啊啊啊啊啊啊啊啊操我啊啊啊免费 | 中文字幕中文有码在线| 色综合色综合色综合天天上班| 亚洲人妻av一区二区 | 久久午夜av一区二区| 国内精品久久久久久一区二区| 在线免费观看日韩av| 国产婷婷综合在线视频中| 热99RE久久精品这里都是精品| 伊人久久大香线蕉亚洲av| 成人一区二区三区在线观看| 欧美午夜精品福利在线观看| 日本一区二区三区精品视频在线| 中文字幕亚洲精品激情欧美| 色橹橹欧美在线观看视频高清免费 | 艳妇臀荡乳欲伦69调教视频| 夫妻性生活一级黄色大片| 国产婷婷综合在线视频中| 美女很黄很黄的视频免费| 色久悠悠在线观看视频 | 国产精品高清无遮挡网站| 美女粉嫩的逼被操到喷水| 午夜福利十八周岁成人| 手机免费av片在线观看| 久久精品国产三级电影| 成人免费在线视频日韩| 高清一区二区中文字幕| 国产一区二区三区三洲| 裸体美女让男人桶免费视频| 精品人妻一区二区三区mp4 | 女人的天堂av网免费| 国产欧美成人精品一区二区| 国产精品日韩中文字幕| 日韩精品女性三级视频| 男人猛躁进女人免费播放视频| 亚洲欧洲中文日韩a乱码| 国产传媒天美av一区二区三区| 亚洲综合国产伊人五月婷| 91精品人妻一区二区蜜桃| 极品人妻手机视频在线| 91精品久久午夜大片| 日韩 有码 中文字幕 在线| 久久精品亚洲国产日韩| 亚洲av二三四五又爽又色又色| 日韩在线中文字幕三区| 太大太粗好爽受不了视频| 绿帽娇妻在卧室疯狂的呻吟| 果冻传媒精选麻豆二区| 丰满美女性爱在线视频看看| 激情国产AV麻豆凡V换脸| 一区二区不卡国产精品| 国产一二三在线不卡视频| 精品国产三级国产普通话| 精品亚洲一区二区三区91| 131美女爱做视频高清在线| 国产激情高中生呻吟视频|