操逼啊口爆啊rrr中途啊免费-中文字幕av网一区二区-中文字幕久久精品波多野结百度-国产三级视频在线观看

雙極性晶體管

二極管

ESD保護、TVS、濾波和信號調(diào)節(jié)ESD保護

MOSFET

氮化鎵場效應(yīng)晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應(yīng)用認(rèn)證產(chǎn)品(AEC-Q100/Q101)

IAN50019 - Thermal boundary condition study on MOSFET packages and PCB substrates

This interactive application note explains the boundary condition study performed to evaluate the thermal performance of various Nexperia MOSFET Packages and PCB Substrates. The results from measurements and simulations obtained in the study led to the creation of PCB Cauer models, which users can utilise in circuit simulators alongside Nexperia electrical and precision electrothermal models.

Author: Christopher Liu, Applications Engineer, Manchester

This interactive application note contains an embedded Cloud based simulation to augment the text.

To open the embedded simulation, simply hover over the simulation image. Left click anywhere in the graphic area once the central play button changes in colour. This opens the schematic in the Cloud environment. See the interactive application note tutorial page for more details on how to use the simulations.

See related application note: AN90013 LFPAK MOSFET thermal design guide

 

Download AN50019

1. Introduction

Power MOSFETs provide efficient conversion and supply of power in a wide variety of automotive, industrial and consumer applications. However, no MOSFET is 100% efficient and as such they exhibit three types of power losses during normal operation:

  • Switching losses during the transitional phase, see Fig 1.
  • Conduction losses during the on-state, see Fig 1.
  • Avalanche losses if breakdown voltage is exceeded when driving an inductive load, see Fig 2.

Figure 1. MOSFET turn-on waveforms


Figure 2. MOSFET turn-off avalanche waveforms

The culmination of these power losses can result in thermal overstress and failure of the MOSFET if not sufficiently accounted for in a PCB design. Therefore, it is necessary to consider thermal analysis during the design cycle to ensure the MOSFET does not exceed its maximum operating temperature. The parameter which gives the user the most relevant indicator of MOSFET thermal performance is known as the junction to ambient thermal resistance, Rth(j-amb).

Nexperia receives a lot of requests regarding Rth(j-amb) and unfortunately there is no single value which can be applied to MOSFETs to address all scenarios and applications that it would be used in. Therefore, Nexperia undertook a parametric study using various measurement setups and simulation tools to see the variability in Rth(j-amb) under different conditions. This resulted in the creation of PCB Cauer models, where users can experiment in a “plug-in and play” fashion to see which PCB is most suited to handle the power dissipated in their application. These models are free to use in Siemens PartQuest as shown in Simulation 1.

Simulation 1. PCB cauer models

This (interactive) application note first aims to explain the nature of heat dissipation and then the evaluations made on MOSFET thermal behaviour across various different package types and scenarios.

2. Thermal resistance, Rth

2.1. Junction to mounting base, Rth(j-mb)

Thermal resistance is a measure of how difficult heat finds it to flow through a medium. This is often quoted between two physical points in a system. It is a one-dimensional parameter and is given by taking the temperature difference divided by the power dissipated between two point locations x and y, as seen in Equation 1.

(Eq 1)

The method of heat propagation within a MOSFET is conduction shown in Equation 2, as the transfer of heat from one solid medium to another solid. Further nformation on this topic can be found in Chapter 2.1.1  of AN90003 [1]. The rate of heat flow, Q, is dependent on:

  • Thermal conductivity, k (W/m2K)
  • Cross-sectional area, A (m2)
  • Initial location temperature, T1 (°C)
  • End location temperature, T2 (°C)
  • Distance between two point locations, x (m)

(Eq 2)

In the thermal characteristics section of a data sheet, the MOSFET’s transient thermal impedance curve and the thermal resistance junction to mounting base, Rth(j-mb), is always denoted by the manufacturer with units °C/W or K/W. This is an important parameter as it’s the dominant and least resistive path for heat to dissipate from the junction and out of the device via conduction. This is shown in Fig 3.

Figure 3. Diagram showing the heat flow between junction and mounting base

A lower Rth(j-mb) value is more desirable when comparing within a specific package type e.g LFPAK56, as it suggests the junction will produce a smaller rise in temperature per unit power that is dissipated.

However, unless all the heat is sunk at the boundary of the mounting base a lower Rth(j-mb) may not always produce a lower temperature response when comparing against different package types e.g LFPAK56E vs LFPAK88. This is because in reality, heat is a three-dimensional phenomenon. Referring to Equation 2 for thermal conduction, the rate of heat flow is directly proportional to the cross-sectional area in addition to being inversely proportional to the distance it travels through.

Should an LFPAK56E and LFPAK88 of the same die size be mounted on the same type of PCB, the LFPAK88 would result in a lower Rth(j-amb) than the LFPAK56E. This is despite the LFPAK88 having a larger Rth(j-mb) than the LFPAK56E. The larger surface area of the LFPAK88 mounting base has a greater effect than the thinner LFPAK56E drain tab in improving the rate of conduction, thus resulting in a smaller temperature increase. This leads us into the importance of Rth(j-amb) parameter.

2.2. Junction to ambient, Rth(j-amb)

Heat transfer does not stop at the boundary of the mounting base and usually takes around 50 – 100 microseconds to start flowing out of the mounting base, depending on the die and drain tab thickness of the MOSFET. If power is continually supplied, the MOSFET will eventually reach a steady-state temperature as heat is dissipated via conduction and thermal radiation into the ambient, from which Rth(j-amb) can be obtained. Since Rth(j-amb) provides a much more informative reflection of a MOSFET’s thermal performance in an application, why is it that sometimes the parameter is not shown on manufacturer data sheets? The issue with Rth(j-amb) is that it’s a boundary condition dependent parameter. This means that it depends on characteristics, some of which are shown in Fig 4 such as:

  • PCB size and material properties
  • Number, area and thickness of copper planes/traces
  • Thermal vias
  • Thermal Interface Material (TIM)
  • External heatsinks
  • Free or forced cooling

Figure 4. Diagram showing the various factors that can affect Rth(j-amb) for a MOSFET, red arrow showing the dominant path for heat to flow from junction to ambient

Therefore, the conditions which affect this thermal resistance value is in the hands of the designer and not the MOSFET manufacturer. Some manufacturer datasheets do include conditions to which Rth(j-amb) was obtained for a MOSFET. Examples of these conditions may originate from standards outlined in JESD51-5 and 51-7. Alternatively, manufacturers may set their own proprietary conditions to obtain a certain Rth(j-amb). Despite stating the conditions, the Rth(j-amb) value may not be of relevance to designers in the first place. For instance, a value obtained on a 2s2p PCB measuring 114.3 mm x 76.2 mm in accordance with JESD51-7 may not apply for a designer’s application where the PCB needs to be small enough to be part of a wearable item. Hence, any Rth(j-amb) value found on a datasheet should only be treated as an indication to thermal performance for a particular application.

To help designers who are in their initial stages of a design cycle and have no finalised prototype or PCB layout, Nexperia undertook a study through a series of measurements on different PCBs, package types and scenarios. The process and results will be explained in the subsequent section and hope to give insight into the thermal performance of various MOSFET packages.

3. Obtaining MOSFET thermal performance data

3.1 Thermal measurements – cold plate

Thermal performance data can be obtained in a number of ways. The transient dual interface method outlined in JESD51-14 [2], provides a great setup to show how much power a MOSFET is able to dissipate if a designer is able to provide a sufficient level of cooling to the system. Prior to transient thermal measurements, the forward voltage drop (VF) over the MOSFET body diode needs to be measured over several different temperatures. An example of this is given in Fig 5. The gradient of the line gives the temperature coefficient of the silicon die with units V/°C or V/K and enables the temperature of the junction to be recorded for a given sensing current.

Figure 5. MOSFET body diode VF as a function of junction temperature when a fixed level of current is applied

Subsequently, heating current is applied and thermal measurements are then taken on the liquid-cooled cold plate with the use of carbon paper as a thermal interface material. This was used to improve thermal contact between PCB and cold plate by reducing microscopic pockets of air which contribute to the overall thermal resistance. The cooling curve is then transformed into a transient thermal impedance curve and the Rth(j-amb) value can be seen once the curve reaches a plateau, signifying steady-state. Fig 6 shows an example of a DUT on the liquid-cooled cold plate held in place with pneumatic pistons to apply force on each corner of the PCB.  Below is the setup used for cold plate measurements and Table 1 shows a list of Rth(j-amb) results that were obtained using FR4 PCBs:

  • Standard FR4 PCB measuring 70 mm x 50 mm x 1.6 mm
  • 1” sq top/multi-layer copper planes
  • 2 oz/ft2 (70 µm) copper thickness
  • 25 µm plated thermal vias for multi-layer PCBs, 1.2 mm x 1.2 mm array across copper planes
  • Sensing current: 0.1 A


Figure 6. Exploded diagram of a MOSFET mounted on 70 x 50 x 1.6 mm PCB clamped using a pneumatic system onto a liquid-cooled cold plate

Table 1. Rth(j-amb) measurement results when PCB underside is under constant cooling on cold plate
Rth(j-amb) cold plate measurements (K/W)
Substrate LFPAK33 LFPAK56D LFPAK56 LFPAK88
FR4 1-layer 21.2 25.0 16.7 9.8
FR4 2-layer 13.1 10.1 7.4 4.8
FR4 4-layer 9.7 9.9 5.6 3.9
IMS 6.0 6.4 3.5 2.1

From Table 1, a significant decrease in thermal resistance is observed by using a 2-layer PCB compared to single layer PCB. This is because the thermal vias provide a path of low thermal resistance for heat to be sunk by the cold plate via conduction. If there were no thermal vias included in the multi-layer PCBs, the full extent of constant cooling would not be applied by the PCB and the Rth(j-amb) values would remain similar to that of the single layer PCBs. Further increasing the number of copper layers also decreases the overall thermal resistance across all package types in conjunction with vias. This is because the increased copper content allows for additional low thermal resistance paths to evenly distribute heat across the PCB to be sunk by the cold plate. It's also seen that using Insulated Metal Substrate (IMS) PCBs made from aluminum, provides a path of even lower thermal resistance for heat to dissipate into the cold plate for all packages.

3.2 Thermal measurements in still-air

Should a manufacturer want to provide Rth(j-amb) example on the data sheet, a commonly used procedure is outlined in JESD51-2 [3]. Instead of a liquid-cooled cold plate, the MOSFET is left to cool under natural convection whilst mounted on a PCB in an enclosure measuring 305 mm x 305 mm x 305 mm (1 ft3) as seen in Fig 7. Cooling under natural convection is a commonly used setup and the results should give close indication to how a MOSFET would behave thermally in a large range of applications without cooling fans or heat exchangers.

Figure 7. Example of a DUT within an enclosure to evaluate Rth(j-amb) under still-air

To evaluate the thermal behaviour of MOSFETs cooled under natural convection, the same set of PCBs were measured in the enclosure with the use of 0.01 A sensing current as opposed to 0.1 A for the cold plate measurements. This was done to reduce the effect of heat from the sense current from influencing the recordings. Therefore, remeasuring the MOSFET body diode VF was needed to get the temperature coefficients of the packages using the smaller sensing current. This is because VF is dependent on temperature and the smaller sensing current produces less heat in the junction, hence requiring a higher VF to push current from source to drain. Table 2 shows the Rth(j-amb) results from measurements in still-air.

Table 2. Rth(j-amb) measurement results when PCB underside is suspended in still-air
Rth(j-amb) still air measurements (K/W)
Substrate LFPAK33 LFPAK56D LFPAK56  LFPAK88
FR4 1-layer 48 49 42 36
FR4 2-layer 41 37 36 32
FR4 4-layer 36 36 34 30
IMS 16 16 13 12

From Table 2, it is seen that the overall thermal resistance of all package types is much higher in the absence of a constant cooling source in the system. Without cooling applied, the composition of the PCB is dominant in determining the overall thermal resistance. Again, the inclusion of more copper planes and thermal vias can decrease the Rth(j-amb) for all the devices. This is because it allows heat to conduct and distribute more evenly throughout the PCB, before being released into the ambient via convection and slight amounts of thermal radiation. Thermal measurements under natural convection show that the gap between the thermal performance of smaller and larger packages become reduced if the PCB design incorporates more copper area, thermal vias and high conductivity materials.

3.3. Thermal simulations – Computational Fluid Dynamics (CFD)

CFD is a highly useful and essential tool when it comes to analysing MOSFET thermal performance. It can offer a multitude of analysis options, which can give a plethora of information to the user for a wide range of designs and setups. Conditions such as fixed temperatures, free and forced cooling can also be applied to emulate real-world scenarios depending on how complex the user wants the simulation to be.

CFD can be more preferable compared to transient thermal measurements during the initial design iterations of a PCB. If the user is able to refine a simulation against a known power dissipation on a known PCB, they can have high confidence in simulation results from other designs with different copper layers and areas without the need to order additional prototype PCBs, saving time and cost. The extent of detail offered by CFD then becomes limited to what scenarios the user is able to create.

3.4. Cumulative Structure Functions - measurements vs. simulations

In this study, we have managed to successfully align CFD simulations with transient thermal measurements across a range of packages and substrate types. This was done through evaluating data from cumulative structure function graphs as shown in Fig 8.

Figure 8. Example of a cumulative structure function graph

The cumulative structure function is a sum of all thermal resistances and thermal capacitances within the system. The graph plots thermal capacitance against thermal resistance as heat is dissipated from the junction (origin) and travels into the ambient, which tends to infinite thermal capacitance. Each material or medium heat travels through has a particular thermal resistance and thermal capacitance. Hence, the change in gradients at different locations in the graph signifies heat leaving the boundary of one medium and entering into another.

The cumulative structure function can be transformed into a type of RC network known as a Cauer model, a simplification of which is shown in Fig 9.

 

Figure 9.  Simplified RC Cauer network representing the thermal behaviour as heat flows from junction to ambient

Regarding the comparison between measurements and simulations, Fig 10 shows an example of an alignment made between measurement and a calibrated simulation for LFPAK33 on FR4 1-layer PCB.

Figure 10. Cumulative structure function comparison made on LFPAK33 on FR4 1-layer PCB

In the region below 1 K/W and 0.01 J/K, the curves represent the heat that is flowing from the junction to mounting base and the long shallow gradient after 1 K/W, signifying relatively high thermal resistance, indicates heat flowing into the PCB. The closeness between measurement and simulation means that we were able to model the heat flowing within the MOSFET with a high degree of precision. The simulation process was then replicated for all the different packages and PCB types for constant cooling and natural convection scenarios with success.

4. Thermal models in circuit simulators

4.1. MOSFET models

SPICE and VHDL based circuit simulators are widely used for thermal analysis in addition to electrical analysis. This is done through the use of lumped parameter models, where electrical terms can be used to represent heat flow in a circuit. Foster or Cauer models, otherwise known as RC thermal models, can represent the temperature response of a MOSFET through a network of thermal resistances and thermal capacitances. If a user is able to obtain the power loss profile from the electrical circuit, it can be used in the current source of an RC model. An example of which is displayed in Fig 11.

Figure 11. Example of a MOSFET Cauer model with 5 RC networks

RC models can be generated through curve fitting algorithms and mathematical transforms with excellent alignment to transient measurements and calibrated CFD simulations. Further information can be found in application note AN11261 RC Thermal Models [4].

In addition to electrical models, Nexperia has an ever-expanding portfolio of 5-pin Precision Electrothermal Models (PETs) shown in Fig.11. PETs build upon what is offered by standard RC models. These models have two additional pins, revealing junction temperature and mounting base temperature for the user to connect or probe. These models offer improved accuracy over legacy electrical models as the electrical behaviour can change due to MOSFET self-heating.

Figure11. Example of a LFPAK56 5-pin Precision Electrothermal Model

4.2. PCB models

As explained previously, heat does not stop at the boundary of a MOSFET and will exit into the PCB and ambient in an application. For a long time due to the complexity and variance of Rth(j-amb), there was no availability of PCB thermal models. Designers would need to estimate a characteristic thermal resistance and thermal capacitance of the PCB to connect in series with the MOSFET RC model to give an estimated steady-state thermal response. Any forced cooling in the system or additional RC networks would be very difficult to estimate given the many environmental variables that can be present.

During this study, Nexperia managed to collate a range of thermal data across all packages from measurements and calibrated CFD simulations. Through the use of curve fitting algorithms and calculations, the mounting base to ambient thermal resistance was able to be derived to create PCB Cauer models. Cauer models were chosen over Foster models, as each node bears physical significance to a position in the model.

Since each node of a Cauer model corresponds to a location within the physical build of the MOSFET and PCB, the position at which Cauer models are connected matters. Hence, PCB Cauer models should be connected after the MOSFET Cauer model. In addition, each MOSFET can only be connected to a single PCB Cauer model as they cannot account for thermal coupling between devices. If there are multiple MOSFETs in a setup, they will each need their own PCB Cauer model. An example of a MOSFET and PCB Cauer connection is shown in Fig. 12

Figure 12. Example of an RC thermal model, with discrete MOSFET and PCB Cauer connected in series

PCB Cauers were created across several package types, substrates and both for constant cooled and natural convection scenarios. The reason why PCB models are package specific is due to the differing rates of heat flow experienced by smaller and larger devices of different mounting base areas, as explained previously with Equation 2. For example, the PCB used for a LFPAK88 device can disspiate more power than an identical substrate used for a LFPAK33.


Figure 13. Comparison between circuit simulation and measurements, showing the steady-state thermal resistance of LFPAK88 on PCBs clamped to a constant cooled cold plate

After their creation, these Cauer models then underwent validation against real measurements in a circuit simulator and from Fig 13, they are seen to bear close resemblance to each other. This demonstrates that the PCB Cauer models are able to provide precise and rapid estimations of MOSFET thermal behaviour. This is a huge advantage and reduces the need for designers to perform physical measurements or complex CFD simulations that either require physical prototypes and heavy computational resources. Nexperia intends to expand the library of PCB Cauer models to cover more PCB types to further aid designers in the future.

7. Summary

This interactive application note has shown the huge variability of the parameter Rth(j-amb) and the challenges faced by design engineers to ensure applications can cope with thermal losses. The study has shown that if a designer is able to decrease the thermal resistance of the PCB through methods such as increasing copper area, thermal vias and using high conductivity materials, smaller MOSFETs can exhibit similar thermal performance to larger MOSFETs under natural convection.

Device level thermal performance is readily available from manufacturers. However, the thermal performance of a MOSFETs can vary hugely in different applications and product designs. This study was initiated with the intent to help designers in their initial design phases where PCB layout and construction is not yet known. The intention was to give users precise thermal estimation tools that are easily accessible and easy to use compared to lengthy measurement and CFD simulation methods.

From this study, Nexperia has managed to create a library of PCB Cauer models across several package types for constant cooled and natural convection scenarios to show the user the variability of thermal performance depending on user design. The results of which aim to streamline the thermal design process and decrease the time taken for designers to create new products. These PCB Cauer models are free to access on Siemens PartQuest along with Nexperia electrical and Precision Electrothermal Models.

A PartQuest embedded Cloud simulation was used in this interactive application note.

References

[1] AN90003, LFPAK MOSFET thermal design guide, Nexperia.

[2] JESD51-14, Transient Dual Interface Test Method for the Measurement of the Thermal Resistance Junction-to-Case of Semiconductor Devices with Heat Flow Through a Single Path, JEDEC SOLID STATE TECHNOLOGY ASSOCIATION.

[3] JESD51-2A, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air), JEDEC SOLID STATE TECHNOLOGY ASSOCIATION.

[4] AN11261, RC thermal models, Nexperia.

Page last updated 15 April 2024.

 

亚洲欧美另类日韩精品| 国产又猛又黄又爽无遮挡| 国产黄色网页在线观看| 丁香婷婷激情综合俺也去| 中文字幕中文有码在线| 中文字幕黄色片在线观看| 在线日韩一区二区三区不卡 | 天堂a免费视频在线观看| 手机免费av片在线观看| 货在沙发风骚至极 自摸肥逼勾引 又黄又爽有无遮挡的网站 | 国产精品亚洲福利在线| 亚洲韩国强奸理伦中文字| 国产精品人妻熟女av | 99国产精品国产自在现线| 日本肥老熟妇在线观看| 亚洲色图偷拍一区二区| 66mio人妻精品一区二区三区| 最新av国产在线播放| 欧美精品在欧美一区二区三区 | 国产人碰人摸人澡人视频| 白色紧身裤无码系列在线| 天天躁日日躁狠狠躁日日| 中文字幕日韩精品免费看| 国产男女猛进猛出粗暴啊| 欧美激情网页一区三区| 久久香蕉国产线看观看6| 美女白虎穴内射喷水视频在线观看| 最近中文字幕国产精品| 久久精品无码一级毛片温泉| 欧美三级视频一区二区三区| 亚洲欧洲中文日韩a乱码| 日韩在线国产一区二区| av黄频在线观看免费| 国产富婆高潮一区二区| 日日噜噜噜噜夜夜爽亚洲 | 亚洲同性男男GV在线观看| 成人三级在线播放线观看| 久久午夜无码鲁丝片午夜精品 | 99久久无色码亚洲字幕| 国产综合亚洲欧美日韩在线| 啊啊啊逼逼好痒啊啊视频| 久久久久亚洲av成人网热| 久久精品国产在热亚洲| 999久久久久国产精品麻豆| 国产另类在线欧美日韩| 痴女av一区二区三区| 人人爽人人澡人人人人妻| 久久精品国产三级电影| 9久精品久久综合久久超碰1| 鸡鸡插进骚逼视频欧美996| 无码无羞耻肉3d动漫在线观看| 国产一卡二卡精品乱码| 欧美日韩欧美性生活视频| 成人三级在线播放线观看| 在线播放日本国产精品| 国产鲜肉帅哥大鸡巴操美女逼内射| 久久久久久精品国产一区| 超大鸡巴操处女小骚逼免费视频| 少妇厨房愉情理伦片视频在线观看| 久久久精品国产精品久久| 美女脱光衣服露出奶头和尿头吊嗨| 男人天堂一区二区av| 99爱在线精品视频免费观看9| 中国无码AV看免费大片在线| 国产精品我不卡在线观看| 亚洲大尺度无码无码专线一区| 久久精品日本一区三区| 成人精品一区二区三区不卡| 国产真实乱免费高清视频 | 欧美精品午夜福利不卡| 神马午夜伦理精品亚洲| 绿奴舔屁眼哦哦哦操我啊哦哦哦| 少妇中出中文字幕久久久| 欧美视频中文字幕视频日韩视频 | 国产高清无码在线一区二区| 天天久久狠狠伊人第一麻豆| 亚洲一区二区懂色av| 中文字幕有码久久高清| 国产黄片久久免费观看| 天天干天天操天天射嘴里| 美女又爽又喷奶观看免费| 欧美精品午夜福利不卡| 精品国产一区二区三区卡| 亚VA芒果乱码一二三四区别| 又色又爽又黄的视频大全| 99爱在线精品视频免费观看9| 小骚货被打桩啊啊骚叫视频网页| 在线观看永久免费黄色| 五月天丁香婷婷狠狠狠| 男人把鸡鸡捅进美女屁骨里| 欧美高清视频在线播放| 成人性爱大阴茎视频高甜| 99久久精品免费看国产免费软件 | 偷拍偷窥女厕一区二区视频 | 两个人免费观看日本的完整版| 一区二区不卡国产精品| 99国产欧美久久久精品蜜桃| 国产成+人+亚洲+综合| 五月天丁香婷婷狠狠狠| 久久久综合久久久鬼88| 男生把坤坤戳进女生阴道里的视频| 草草影院黄色在线观看| 久久精品无码一级毛片温泉| 超性感美女被狂日高潮免費視頻| 2020国内精品自在自线| 国产精品人妻熟女av| 国产一级性生活片免费观看| 欧美精品在欧美一区二区三区 | 看免费国外大鸡巴操小骚逼| 日本中文一二区有码在线| 日韩亚洲人妻一区二区| 日韩AV在线一区二区三区合集| 中文字幕有码久久高清| 国产又色又爽又黄的视频多人| 视频一区中文字幕在线观看| 大鸡巴厂长狂操女人的无毛小逼 | 黄色三级电影在线入口| 好吊妞一样的免费视频| 青青草99久久这里只有精品| 麻豆精品人妻一区二区三区99| 日韩一区二区三区免费观看的人 | 又色又爽又黄的视频大全| 猛男人插女人逼里面操逼 | 正在播放女子高潮大叫要| 国产精品有码av在线| 国产一级性生活片免费观看| 人妻少妇被猛烈进入中出视频 | 国产精品国产三级国产普 | 亚洲一区日韩二区精品| 久久精品熟女亚洲av天美| 日韩在线精品国产一区二区| 欧美精品午夜福利不卡| 色哟哟一区二区三区四区视频| 男女激情视频网站免费在线| 91成人亚洲天堂高清| 日韩一区二区三区免费视频| 亚洲和欧美一区二区三区| 中文字幕乱码一区久久麻豆蜜芽| 国产精品视频每日更新国产清纯| 亚洲日本国产乱码va在线观看| 欧美成人综合在线观看视频| 两根肉棒操的好爽的视频| 正在播放女子高潮大叫要| 国产av天堂久久精品| 国产精品成人av高清在线观看 | 国产日韩欧美亚洲另类| 东北少妇自拍高潮喷水| 午夜视频免费在线观看免费| 日本在线观看高清区一区二| 欧美视频中文字幕视频日韩视频 | 日韩精品一区二区三区视频网| 亚洲av精品一区在线| 久久免费视频久久免费视频99 | 日日摸夜夜添夜夜添日韩| 中文字幕av无码不卡二区| 国产精品亚洲欧美久久| 国产黄色网页在线观看| 欧美一级久久久一区二区| 成年免费A级毛片天天看| 欧美美女真人全裸外阴大阴口日逼| 亚洲AV无码一区二区三区五月天| 色综合久久久久久久粉嫩| 可以在线观看的黄色av| 男人下面插入女生下面啊啊啊视频| 亚洲另类激情综合偷自拍| 国内揄拍国内精品少妇国语麻豆| 久久精品国产欧美电影| 两根肉棒操的好爽的视频| 正在播放女子高潮大叫要| 久热这里只有精品视频4| 自拍偷拍欧美日韩高清不卡| 看免费国外大鸡巴操小骚逼| 人妻久久久一区二区三区视频| 亚洲嫩模三级片中文字幕| 久久66热re国产毛片基地| 国产成人欧美一区二区三区的| 香蕉av秘 一区二区三区| 91久久精品美女高潮喷白桨| 免费 无码 国产在线观| 亚洲最大色大成人av| 欧美高清视频在线播放| 国产美女极度色诱视频| 无码少妇一级av片在线观看| 白嫩美女在线日韩专区| 成人两性生活免费视频| 欧美人妻一区二区三区88av| av网站在线观看亚洲国产| 男生使劲操女生下面视频国产| 久热热久这里只有精品国产| 国产精品成人久久综合| 高清一区二区中文字幕| 精彩视频尤物视频在线| 国产女人av一级一区二区三区| 亚洲一区精品二人人爽久久| 男生把小鸡鸡插到女生阴巢的视频| 国产综合精品一区二区| 91精品国自产拍老熟女露脸| 91中文字幕国产精品| 欧美黄色成人在线电影| 国产美女人喷水在线观看| 欧美精品久久天堂久久精品| 91午夜精品福利在线亚洲| 香蕉成人伊视频在线观看| 久久久久亚洲精品国产av麻豆| 91亚洲欧美综合高清在线| 18禁止免费网站免费观看| 国产在线精品免费播放| 国产一级二级三级内谢| 成人经典视频免费在线| 少妇高潮喷水久久久久久久久久| 久久精品美国亚洲av伦理| 国产精品区第二页尤自在拍| 国产非洲一区二区三区久久久久久 | 色欲av一区二区三区精品| 久久精品国产亚洲av影片| 黄色av网站一区二区三区| 99热精品在线观看首页| 天天躁日日躁狠狠躁日日| 韩国三级一区二区三区| 久久综合九色综合色多多| 伊人成人在线高清视频 | 偷拍偷窥女厕一区二区视频 | 男人插女人鸡在线污视频观看 | 天天操夜夜一操免费看| 自拍日韩亚洲一区在线| 在线人妻无码中文dvd视频 | 国产性色av一区二区| 97人妻碰碰碰久久久久免费| 国产又猛又黄又爽无遮挡| 久久久久伊人亚洲最大av综合| 国内揄拍国内精品久久| 加勒比东京热综合区一区二| 国内午夜精品视频在线观看| 91福利免费体验区试看藏经阁| 女自慰喷水大学生高清免费看| 亚洲精品国产成人综合免费| 久久精品亚洲国产日韩| 男人捅开女人的逼国语对白| 韩国床震无遮挡免费视频| 大白屁股精品视频国产| 亚洲同性男男GV在线观看 | 国产av天堂久久精品| 国产精品区第二页尤自在拍| 日韩精品一区二区三区视频网| 女人的天堂av网免费| 欧美色综合视频一区二区三区| 偷拍偷窥女厕一区二区视频| 大鸡八男暴肏淫浪妇视频| 日韩av高清不卡一区二区三区| 好吊妞一样的免费视频| 丝袜美腿福利一区二区| 日韩欧美人妻之中文字幕| 大鸡八男暴肏淫浪妇视频| 日本女优禁断视频中文字幕| 国产a级久久久精品视频| 俄罗斯美女扒开B口B毛男人玩吗| 操爆白皙美女下面的骚逼视频| 扫码观看视频的二维码怎么生成 | 男女激情视频网站免费在线| 国产传媒天美av一区二区三区| 欧美三级视频一区二区三区 | 91亚洲欧美综合高清在线| 国产郑州性生活免费| 日本欧美高清乱码一区二区 | 亚洲成人av免费在线看| 国产欧美精品一区二区性色| 国产精品亚洲欧美久久| 国产日韩欧美亚洲另类| 猛男人插女人逼里面操逼| 男女性情视频免费网站| 久久午夜av一区二区| 国产精品人成在线播放| 国产日本亚洲精品在线一二三四 | 欧美国产大片一区视频| 性生活视频在线观看视频| 天堂av毛片免费在线看| 91出品视频在线观看| AV色欲无码人妻中文字幕| 欧美精品国产成人综合亚洲| 午夜免费福利视频一区| 国产又色又爽又黄的视频多人| 亚洲精品在线韩国日本| 国产免费一区二区三区最新6| 亚洲韩国强奸理伦中文字| 痴女av一区二区三区| 男人抚摸亚洲女大学生的大胸| 亚洲乱码中文欧美第一页| 亚洲av情网站在线观看 | 久久999国产高清精品| 国产午夜精品一区理论片| 人妻熟女一区二区aⅴ在线视频| 国产日韩欧美在线视频播放 | 国产视频久久久久久久久久久| 自拍偷拍欧美日韩高清不卡| 色婷婷综合五月在线观看| 伊人2222成人综合网| 欧美精品在欧美一区二区三区| 大陆猛男大鸡巴操骚美女骚逼视频| 最近日本免费播放视频午夜| 久久精品中文字幕一二三| 亚洲免费视频区一区二| 欧美A极v片亚洲A极v片| 九九久久精品视频免费观看 | 激情春色欧美激情国产剧情| 亚洲理论中文在线观看| 国产精品久久久久久妇女免费| 伊人天堂午夜精品草草网| 午夜福利十八周岁成人| 天堂a免费视频在线观看| 深夜欧美福利在线视频| 国自产精品手机在线观看视| 欧美日韩欧美性生活视频| 国产富婆高潮一区二区| 四虎精品视频永久免费| 精品国产尤物黑料在线观看| 美女被大鸡巴插男内射欧美| 亚洲成人自拍在线视频| 我要大鸡吧在线观看免费 | 亚洲韩国强奸理伦中文字| 在线亚洲91成人在线视频视频| 成人性爱大阴茎视频高甜| 日韩推理片2021电影在线观看| 久久偷拍情侣激情视频| 欧美精品久久久天堂一区| 日韩精品一区二区三区视频放| 麻豆成人久久精品二区三区红| 国产夫妻自拍刺激视频在线播放 | 绿奴舔屁眼哦哦哦操我啊哦哦哦| 在线免费看黄国产精品| 日本黄色一区二区三区| 五月婷婷六月丁香深爱| 91精品国产福利在线观看性色| 国产又黄又爽又粗的视频在线观看 | 人妻少妇被猛烈进入中出视频| 日本高清一区二区欧美| 久久久亚洲国产精品一区| 久久亚洲出白浆无码国产| 精品久久久久久久大| 亚洲av情网站在线观看| 热99RE久久精品这里都是精品| 亚洲精品中文有码字幕| 大鸡巴厂长狂操女人的无毛小逼| 日本女同学在工作里小媳妇操逼逼| 亚洲国产av一区二区三区| 亚洲日本国产乱码va在线观看| 在线不卡视频国产观看| 99国产欧美久久久精品蜜桃| 男生大肉捧插女生的视频| 久久久久精品产亚洲av| 欧美无遮挡在线国产不卡| 黄色视频在线观看破处女| 少妇连续高潮爽到抽搐| 午夜激情视频福利在线观看| 男女鸡巴插黄激情视频欧美| 国产一级片大全免费在线播放| 99久久视频久久热视频| 在线观看欧美激情第一页| av男人在线东京天堂| 在线观看日本一区二区三区四区| 免费观看av在线播放| 久久精品亚洲国产日韩| 人妻久久久一区二区三区视频| 日韩的一区二区区别是什么| 99re7在线观看国产精品| 在线亚洲91成人在线视频视频| 91人人妻人人澡人人爽秒播| 日本黄色一区二区三区| 日本在线有码中文视频| 午夜韩国理论片在线观看| 国产天堂av在线免费观看| 国产成+人+亚洲+综合| 性感骚女爆射搞基喷水操软件下载| 成人午夜视频在线喷水| av永久网站在线观看| 丁香婷婷激情综合俺也去| 东北少妇自拍高潮喷水| 伊人久久大香线蕉亚洲av| 男女互射视频在线观看| 哺乳一区二区久久久免费| 嗯啊不要用力操逼视频cable| 成年女人午夜毛片免费视频| 欧美激情视频一区 二区| 午夜福利片国产精品张柏芝| 国产真实乱免费高清视频 | 日韩欧美亚洲精品成人| 性生活AV在线直播成人社区| 大鸡巴插进小骚逼漫画羞羞漫画| 免费人成视频app不收费| 中文字幕中文有码在线| 久久这里只有偷拍精品视频| 亚洲人尤物视频在线观看| 撕开奶罩揉吮奶头大尺度视频| 久久999精品米奇久久久| 国产麻豆剧传媒免费观看| 男人鸡巴插进女人B里的视频| 国产97在线精品一区| 公车好紧好爽再搔一点浪一点| 奇米777狠狠色噜噜狠狠狠| 四房色播五月天婷婷丁香| 两个奶头被吃高潮视频免费版| 久青草视频在线免费观看| 黄色网色网色网色网色| 97精品伊人久久大香| 99久久婷婷国产综合精品免费| 色噜噜狠狠狠综合曰曰曰| 亚洲国产精品成人综合片| 亚洲99精品一区二区三区| 国产免费一区二区三区最新6| 最近中文字幕国产精品| 国产激情高中生呻吟视频| 中国一级全黄的免费观看 | 免费国产国语一级特黄aa大片| 欧美91精品一区二区三区| 亚洲欧洲国产精品香蕉网| 美女脱光衣服露出奶头和尿头吊嗨| 亚洲精品一二三区不卡| 我要看外国女生操逼逼的视频| 艳妇臀荡乳欲伦69调教视频| 一区二区三区最新中文字幕| 日韩 国产 精品 亚洲 欧美 | av日韩精品在线播放| 免费黄色国产精品日更| 97人人视频波多野结衣蜜月| 国产传媒第一页在线观看 | 夜夜爽狠狠天天婷婷五月| 国内精品国产成人国产三级| 欧美激情网页一区三区| 久青草视频在线免费观看| 国产美女极度色诱视频| 色偷拍亚洲偷自拍视频| 热99RE久久精品这里都是精品| 美国妓女与亚洲男人交配视频| 91精品久久午夜大片| 久久久久久亚洲国产精品一区二区| 日韩推理片2021电影在线观看 | 国产三级精品在线不卡| 东北少妇自拍高潮喷水| 啊好爽操我逼快用鸡巴操我视频 | 久久综合九色综合色多多| 夫妻性生活一级黄色大片| 黄色顶级男和女性视频毛视频| 男人下面插入女生下面啊啊啊视频| av午夜精品一区二区三区 | 久久久久久精品国产一区| 国产无遮挡又黄又爽又大| 视频在线观看免费高清自拍| 夫妻性生活视频在线免费看| 久久久久久无码精品大片| 亚洲日本国产乱码va在线观看| 亚洲同性男男GV在线观看| 啊用大鸡巴操骚逼逼视频| 亚洲国产av一区二区三区| 五十老熟女高潮嗷嗷叫| 国产精品v日本精品v欧美精品 | 最新精品亚洲成a人在线观看| 国产熟女激情视频自拍| 97精品日韩欧美一区二区三区 | 亚洲欧美国产日韩专区| 亚洲人尤物视频在线观看| 美女被黑人鸡巴草的爱液狂溅| 99精品视频看国产啪视频新| 亚洲成人自拍在线视频| 国产一区二区最新在线| 亚洲欧洲日?国码久在线| 精品国语自产拍在线观看| 国产91精品系列在线观看| 欧美日韩午夜在线一区| 成人国产激情自拍视频 | 男人猛躁进女人免费播放视频| 在线观看日韩一区二区视频| 男人把鸡鸡捅进美女屁骨里| 九九最新视频免费观看九九视频| 操小逼流白浆日韩免费小视频 | 国产另类在线欧美日韩| 国产精品免费av在线播放| 四虎国产永久免费视频| 国产午夜精品一区理论片| 久久精品av免费观看| 欧美日韩一级二级三区高清视频| 久青草视频在线免费观看| 成人麻豆日韩在无码视频| 欧美91精品一区二区三区| 欧美激情日韩精品久久久| 久久人妻久久人妻涩爱| 久久精品成人无码观看56| 大鸡巴暴草美女的小骚逼| 亚洲日韩精品欧美一区二区三区| 亚洲高清在线精品一区二区 | 青青国国产视在线播放观看91| 国产视频久久久久久久久久久| 货在沙发风骚至极 自摸肥逼勾引| 公侵犯人妻中文字幕一区| 亚洲中文字幕中文在线| 中文字幕中文有码在线| 啊啊啊逼逼好痒啊啊视频| 人妻熟女一区二区三区在线| 天堂av毛片免费在线看| 自由成熟性生活免费视频| 免费成人在线不卡视频| 又色又爽又黄的视频大全| 欧美人与禽交片在线观看| 中文字幕人妻高清乱码| 91久久国产精品91久久性色| 国产欧美成人精品一区二区| 国产女人av一级一区二区三区 | 亚洲av人片乱码色午夜| 久热热久这里只有精品国产| 裸体美女让男人桶免费视频| 五月婷婷六月丁香激情综合网| 91大香蕉大香蕉尹人在线| 中文字幕一区二区三区乱码人妻 | 中文人妻av一区二区三区| 天天干天天操天天射嘴里| 大鸡巴抽插女人骚逼视频| 重磅泄露操鸡吧美女视频| 国产精品午夜一区二区三区四区| 激情五月天丁香啪啪综合 | 无码人妻精品丰满熟妇区| 91精品国产福利在线观看性色 | 欧美人妻一区二区三区88av| 国产精品区第二页尤自在拍| 日韩欧美一级特黄大片| 国产传媒第一页在线观看| 97精品日韩欧美一区二区三区 | 国产综合永久精品日韩| 91蜜桃臀久久一区二区| 青青草青娱乐免费在线视频| 日韩黄片毛片在线观看| 祼体美女上厕所被操视频APp| 国产黄色网页在线观看| 麻豆精品人妻一区二区三区99| 扫码观看视频的二维码怎么生成| 无码系列久久久人妻无码系列| 亚洲日本一线产区二线区 | 国产热女视频一区二区三区| 操白虎护士小骚逼的视频| 9久精品久久综合久久超碰1| 国产午夜福利导航在线| 97精品在线视频播放| 欧美激情日韩精品久久久| 激情国产AV麻豆凡V换脸| 午夜免费福利视频一区| 美女高潮潮喷冒白浆免费视频 | 玖玖热在线视频免费观看| 欧美一级久久久久久国产| 国产美女人喷水在线观看| 精品国产一区二区三区蜜殿最| 国产一区二区三区三洲| 国产亚洲综合一区二区| 黄色顶级男和女性视频毛视频| 亚洲国产精品一区二区三区四区 | 日韩av高清不卡一区二区三区| 激情伊人五月天久久综合| 我要大鸡吧在线观看免费| 久久久人妻国产精品一区| 国产肥熟女老太老妇A片| 国产一区二区三区尤物视频| 精品一区二区三区毛片无码18| 先锋影音在线资源91| 亚洲AV无码一区二区少妇| 久久精品国产亚洲欧美成人| 国产欧美又粗又长又爽| 中文字幕一区二区三区乱码人妻| 色久悠悠在线观看视频| 未满十八禁止在线播放| 未满十八禁止在线播放| 日本在线有码中文视频| 日本精品福利在线视频| 免费成人在线不卡视频| 欧美一区二区三区播放| 国产精品亚洲福利在线| 天天操亚洲精品日韩欧美| 91精品国产美女福到在线不卡| 日本女优禁断视频中文字幕| 男人插女人鸡在线污视频观看| 欧美精品国产成人综合亚洲| 精品人妻一区二区三区mp4| 久久综合九色综合色多多| 亚洲一区国产午夜福利| 国产精品午夜免费福利| 人妖系列中文字幕欧美系列| 中文字幕中文字幕乱码| 91精品国产美女福到在线不卡| 久久久久久久久久久久新| 亚洲国产精品一区二区久久预告片 | 亚洲一区日韩二区精品| 欧美二精品二区免费看| 社保交够15年可以辞职等退休吗| 国产精品免费av在线播放| 青青河边草视频在线观看| 国产在线观看一区二区三 | 国产精品免费视频播放不卡| 国产免费人成视频尤物| 免费国产高清在线观看最新| 欧美日韩中文精品在线| 高清一区二区中文字幕| 黄色三级三级三级免费观看| 女自慰喷水大学生高清免费看| 99爱在线精品视频免费观看9| 久久这里只有偷拍精品视频| 亚VA芒果乱码一二三四区别| 精彩视频尤物视频在线| 大鸡巴用力抽插骚逼视频| 91国产自拍在线一区| 日韩欧美在线观看黄色| 日本一区二区三区精品视频在线| 女优日本中文字幕五十| 夜夜嗨天堂精品一区二区| 我要看外国女生操逼逼的视频| 亚洲国产日韩欧美综合在线| 中国无码AV看免费大片在线| 国产人碰人摸人澡人视频| 超大鸡巴操处女小骚逼免费视频 | 99国产精品亚洲一区二区三区| 成人福利视频免费观看| 日韩推理片2021电影在线观看 | 伊人天堂午夜精品草草网| 婷婷亚洲综合五月天麻豆| 亚洲国产精品免费线观看| 国产一区二区精品播放| 九九热视频大全精品免费| 两根肉棒操的好爽的视频| 玖玖热在线视频免费观看| 日本不卡二区在线观看| 操小逼流白浆日韩免费小视频| 日韩av天堂手机在线观看| 欧洲免费无线码在线观看土| 日韩欧美亚洲精品成人| 999国产精品永久免费视频| 51短视频精品全部免费| 白白色手机免费在线视频| 啊啊啊啊啊啊啊啊操我啊啊啊免费| 正在播放干熟妇久久精品视频一本| 美女扒开屁股让男人桶大奶子骚逼| 这里都是精品熟女内射| av网站在线观看亚洲国产| 国产日韩欧美亚洲另类| 在线观看一区二区三区亚洲| 好吊妞人成视频在线观看| 91九色成人在线观看| 男人插女人鸡在线污视频观看| 欧美日韩综合不卡一区二区三区| 91成人亚洲天堂高清| 米奇8888在线精品视频| 男生鸡巴操女生逼逼视频。| 一级国产片在线观看免费| 激情五月亚洲婷婷综合五月天| 久久香蕉国产线看观看6| 正在播放干肥熟老妇视频| 啊用大鸡巴操骚逼逼视频| 精品人妻伦九区久久69 | 超碰98人人插完整版在线观看| 精品久久只有精品做人人| 91人人妻人人澡人人爽秒播| 国产精品有码av在线| 公车好紧好爽再搔一点浪一点| 在线观看永久免费黄色| 成人福利视频免费观看| 91蜜桃臀久久一区二区| 国产精品国产午夜免费看| 午夜亚洲精品中文字幕| 131美女爱做视频高清在线 | 一区二区三区激情在线观看| 国产综合精品一区二区| 国产在线观看黄av免费| 国产精品91福利一区二区三区| 卡通动漫一区二区综合| 午夜亚洲理论片在线观看| 正在播放干肥熟老妇视频| 一区二区不卡国产精品| 9久热久re爱免费精品视频| 伊人久久大香线蕉亚洲av| 国产欧美精品久久99亚洲| 日日摸夜夜添夜夜添亚洲女人| 欧美午夜精品福利在线观看| 大鸡巴操大人体逼的视频| 国内精品久久人妻白浆| 国产激情高中生呻吟视频| 亚洲欧美日韩欧美一区二区三区| 饥渴少妇高潮露脸嗷嗷叫| 最近日本免费播放视频午夜| 成人麻豆日韩在无码视频| 四虎永久在线精品视频观看| 久久综合中文字幕一区二区| 精品久久久久久久大| 国产亚洲一区二区三区精品久久| 两根肉棒操的好爽的视频| 亚洲AV元码天堂一区二区三区| 国产精品自在在线午夜精华在线 | 一级a做片免费观看久久| 操小逼流白浆日韩免费小视频 | 亚洲AV成人片色在线观看高潮| 大鸡吧操我纸牌视频啊啊啊| 天天操夜夜一操免费看| 美国妓女与亚洲男人交配视频| 日韩在线中文字幕三区| 九九最新视频免费观看九九视频| 操小逼流白浆日韩免费小视频| 91精品久久久老熟女九色9| 成人精品一区二区三区不卡| 日本精品福利在线视频| 白白色手机免费在线视频| 国产精品国产三级国产普| 日韩精品视频在线观看的| 美日韩精品一区三区二区| 国产蜜臀av在线一区在线| 中文字幕 乱码 中文乱码视频| 高清女厕偷拍一区二区三区| 国产蜜臀大码av影院| 日韩成人福利在线视频| 北海莫菲尔国际精品酒店| 久草手机在线观看视频| 亚洲伊人情人综合网站| 男的鸡插进女的逼免费视频| 九九热最新免费在线观看 | 成人公开无码免费DVD视频| 精品国产一区二区三区卡| 五月婷婷六月丁香深爱| 欧美人妻少妇精品久久| 美女被草视频免费网站| 亚洲精品中文有码字幕| 国产视频一区二区三区免费看| 亚洲一区二区天堂在线| 日韩av高清不卡一区二区三区| 综合色欲久久精99999| 国产av丝袜美腿视频一区| 久久亚洲精品专区蓝色区| 精品人妻一区二区三区中文字幕| 国产精品一级二级三级视频| 亚洲一区二区懂色av| 一本色道久久亚洲av红楼| 玖玖资源网站最新网站| 国产精品一区二区三区欧美| 青青草99久久这里只有精品| 最近日本免费播放视频午夜| 国产视频久久久久久久久久久| 午夜福利宅福利国产精品| 国产成人精品无人区一区| 无码吃奶揉捏奶头高潮视频| 另类艳情双性人妖视频网站| 视频一区中文字幕在线观看| 欧美美女真人全裸外阴大阴口日逼| 亚洲精品乱码在线播放| 国产日韩欧美在线视频播放| 亚洲精品无码专区在线观看| 国产乱码精品一区二区三区播放| 97激情在线视频五月天视频| 国产成人欧美一区二区三区的| 久久精品国产三级电影| 日本大黄毛逼自拍视频| 国产一级片大全免费在线播放 | 国产精品久久av麻豆| 久久久综合久久久鬼88| 深夜福利一区二区三区欧美| 99国产精品黄色片子| 五月婷婷六月丁香激情综合网| 最近中文字幕国产精品| 女自慰喷水大学生高清免费看| 美女被鸡巴插入喉咙视频在线 | 成人经典视频免费在线| 国产日韩欧美另类专区| 91豆麻精品91久久久久久 | 日本是全亚洲最发达的国家| 美国女人大兵的大鸡巴操男人的逼|