操逼啊口爆啊rrr中途啊免费-中文字幕av网一区二区-中文字幕久久精品波多野结百度-国产三级视频在线观看

雙極性晶體管

二極管

ESD保護(hù)、TVS、濾波和信號調(diào)節(jié)ESD保護(hù)

MOSFET

氮化鎵場效應(yīng)晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應(yīng)用認(rèn)證產(chǎn)品(AEC-Q100/Q101)

Power density, RDS(on) and miniaturization

通過大量投資于研發(fā),我們持續(xù)不斷地利用先進(jìn)的小信號和功率MOSFET解決方案擴(kuò)充我們的產(chǎn)品組合。我們種類齊全的產(chǎn)品組合提供當(dāng)今市場所需的靈活性,讓您可以輕松選擇最適合您系統(tǒng)的產(chǎn)品。我們市場領(lǐng)先的技術(shù)確保提供最高的可靠性和性能,而先進(jìn)的封裝則可以增強(qiáng)電阻和熱性能,同時縮小尺寸,降低成本。

精選產(chǎn)品

Focus Product Families

最新新聞和博客

  • 博客文章
7月 4, 2022

Switch on with tiny MOSFETs

參數(shù)搜索

MOSFETs
數(shù)據(jù)加載中,請稍候...
參數(shù)搜索不可用。

Get MOSFETs suggested based on your application

With over 900 products in our portfolio – you don’t need to be an expert in MOSFETs to select the device with the best performance for your requirements. Specify your application below, put in your conditions and get three MOSFETs suggested. The suggestions are based on results from spice simulations with the top three best performing devices shown.

版本 名稱 描述 安裝方法 表面貼裝 引腳 間距(mm) 占位面積(mm2) PDF
Visit our documentation center for all documentation

Application note (32)

文件名稱 標(biāo)題 類型 日期
AN90059.pdf Power MOSFET gate driver fundamentals Application note 2025-09-10
AN90011.pdf Half-bridge MOSFET switching and its impact on EMC Application note 2025-09-10
AN50019.pdf Thermal boundary condition study on MOSFET packages and PCB substrates Application note 2025-09-10
AN50002.pdf Automotive LED side light SEPIC DC-to-DC converter design example Application note 2025-09-10
AN11261.pdf RC Thermal Models Application note 2025-09-10
AN11160.pdf Designing RC Snubbers Application note 2025-09-10
AN11158.pdf Understanding power MOSFET data sheet parameters Application note 2025-09-10
AN10273.pdf Power MOSFET single-shot and repetitive avalanche ruggedness rating Application note 2025-09-10
AN90046.pdf CCPAK1212i Design Guide Application note 2025-09-08
AN90016.pdf Maximum continuous currents in NEXPERIA LFPAK power MOSFETs Application note 2025-09-08
AN90001.pdf Designing in MOSFETs for safe and reliable gate-drive operation Application note 2025-09-08
AN50014.pdf Understanding the MOSFET peak drain current rating Application note 2025-09-08
AN50006.pdf Power MOSFETs in linear mode Application note 2025-09-08
AN11243.pdf Failure signature of Electrical Overstress on Power MOSFETs Application note 2025-09-08
AN11156.pdf Using Power MOSFET Zth Curves Application note 2025-09-08
AN90034.pdf Nexperia Precision Electrothermal models in SPICE and VHDL-AMS for Power MOSFETs Application note 2025-09-01
AN90003.pdf LFPAK MOSFET thermal design guide Application note 2025-09-01
AN50003.pdf Driving solenoids in automotive applications Application note 2025-04-09
AN50020.pdf MOSFETs in Power Switch applications Application note 2024-05-27
AN50005_translated_20230317.pdf 大電力アプリケーションにおけるパワーMOSFETの並列接続 Application note 2023-04-03
AN50009.pdf Power MOSFET applications in automotive BLDC and PMSM drives Application note 2022-07-05
AN90032.pdf Low temperature soldering, application study Application note 2022-02-22
AN50001.pdf Reverse battery protection in automotive applications Application note 2021-01-12
AN11158_ZH.pdf Understanding power MOSFET data sheet parameters Application note 2021-01-04
AN90023.pdf Thermal performance of DFN packages Application note 2020-11-23
AN90017.pdf Load switches for mobile and computing applications Application note 2020-09-02
AN90019.pdf LFPAK MOSFET thermal resistance - simulation, test and optimization of PCB layout Application note 2020-07-20
AN10441.pdf Level shifting techniques in I2C-bus design Application note 2020-02-11
AN90009.pdf Leakage of small-signal MOSFETs Application note 2019-11-08
AN11599.pdf Using power MOSFETs in parallel Application note 2016-07-13
AN11119.pdf Medium power small-signal MOSFETs in DC-to-DC conversion Application note 2013-05-07
AN11304.pdf MOSFET load switch PCB with thermal measurement Application note 2013-01-28

Leaflet (18)

文件名稱 標(biāo)題 類型 日期
nexperia_document_CCPAK_MOSFETs_2025.pdf CCPAK MOSFETs leaflet Leaflet 2025-09-18
nexperia_document_CCPAK_MOSFETs_2025-CHN.pdf CCPAK MOSFETs leaflet CHN Leaflet 2025-09-18
nexperia_document_leaflet_IDs_2024_CHN.pdf nexperia_document_leaflet_IDs_2024_CHN Leaflet 2024-09-12
nexperia_document_leaflet_IDs_2024.pdf nexperia_document_leaflet_IDs_2024 Leaflet 2024-09-12
nexperia_document_leaflet_DFN_Packages_Diodes_Transistors_ESD_Protection.pdf DFN Packages Diodes Transistors ESD Protection Leaflet 2024-08-26
nexperia_document_leaflet_DFN2020MD-6_2023.pdf DFN2020MD-6 Leadless package with side-wettable flanks Leaflet 2023-09-19
nexperia_document_leaflet_DFN2020MD-6_2023-CHN.pdf 帶有側(cè)邊可濕焊盤的無引腳封裝 Leaflet 2023-09-19
nexperia_document_leaflet_SsMOS_for_mobile_2022.pdf High volume small-signal MOSFETs for mobile and portables, in WLCSP and leadless DFN packages Leaflet 2022-07-04
nexperia_document_leaflet_SsMOS_for_mobile_2022-CHN.pdf 適合移動和便攜式設(shè)備的 大批量小信號MOSFET, 采用WLCSP和無引腳DFN封裝 Leaflet 2022-07-04
nexperia_document_leaflet_LFPAK88_2022_CHN.pdf LFPAK88 將功率密度提升到新高度 Leaflet 2022-03-10
nexperia_document_leaflet_LFPAK88_2022.pdf LFPAK88 - Driving power-density to the next level Leaflet 2022-03-09
nexperia_document_leaflet_DFN0606_LR_2020.pdf DFN0606 Leaflet 2020-04-15
nexperia_document_leaflet_DFN0606_CHN_2020.pdf DFN0606 Chinese Translation Leaflet 2020-04-15
Nexperia_Document_Leaflet_LFPAK33_12022020_CH.pdf LFPAK33 leaflet Leaflet 2020-03-25
Nexperia_Document_Leaflet_LFPAK33_12022020.pdf LFPAK33 shrinking the power footprint Leaflet 2020-03-25
nexperia_document_leaflet_WLCSP_201803_CHN.pdf WLCSP Chinese Translation Leaflet 2018-04-25
nexperia_document_leaflet_WLCSP_201803.pdf Small-signal MOSFETs in WLCSP - Smallest size - lowest RDS(on) Leaflet 2018-04-25
nexperia_document_leaflet_LFPAK56D_factsheet_LR_201708.pdf LFPAK56D the ultimate dual MOSFET Leaflet 2017-08-17

Marcom graphics (1)

文件名稱 標(biāo)題 類型 日期
LFPAK56_SOT669_mk.png plastic, single-ended surface-mounted package; 4 terminals; 4.9 mm x 4.45 mm x 1 mm body Marcom graphics 2017-01-28

Selection guide (1)

文件名稱 標(biāo)題 類型 日期
Nexperia_Selection_Guide_2025.pdf Nexperia selection guide 2025 Selection guide 2025-05-16

Technical note (3)

文件名稱 標(biāo)題 類型 日期
TN00008.pdf Power MOSFET frequently asked questions and answers Technical note 2025-09-10
TN90002.pdf H-bridge motor controller design using Nexperia discrete semiconductors and logic ICs Technical note 2025-02-10
TN90001.pdf LFPAK MOSFET thermal resistance Rth(j-a) simulation, test and optimisation of PCB layout Technical note 2018-05-17

User manual (3)

文件名稱 標(biāo)題 類型 日期
Nexperia_document_book_MOSFETGaNFETApplicationHandbook_2020.pdf MOSFET & GaN FET Application Handbook User manual 2020-11-05
The_Power_MOSFET_Handbook_Chinese_Version_201808.pdf The Power MOSFET Handbook - Chinese Version 201808 User manual 2019-11-12
UM90001.pdf Store and transport requirements User manual 2018-04-06

White paper (1)

文件名稱 標(biāo)題 類型 日期
Nexperia_document_whitepaper_DFN_Wave_Soldering_2020.pdf Whitepaper: Can DFNs be successfully wave soldered? White paper 2020-09-01

快速學(xué)習(xí)

在汽車安全氣囊應(yīng)用中被遺忘的MOSFET – 快速學(xué)習(xí)

快速學(xué)習(xí): 什么是LFPAK?

快速學(xué)習(xí): 低Qrr MOSFET在開關(guān)應(yīng)用中的優(yōu)勢

產(chǎn)品和技術(shù)演示

BLDC電機(jī)控制應(yīng)用中LFPAK MOSFET增加至最高電流

高電流MOSFET – 新高度

用于熱插拔應(yīng)用的增強(qiáng)型SOA技術(shù)LFPAK 5x6 ASFET

用于12V高電流電路保護(hù)應(yīng)用的LFPAK88 MOSFET

電池反向保護(hù)解決方案

為開關(guān)應(yīng)用增強(qiáng)的NextPower 100V MOSFET

Nexperia Demo展示 - 使用功率MOSFET處理高達(dá)380A的電流

Nexperia Demo展示 - 并聯(lián)MOSFET之間的平衡均流

采用LFPAK88 MOSFET的高電流三相無刷直流電機(jī)驅(qū)動應(yīng)用

Nexperia Demo展示 - 采用P溝道LFPAK56 MOSFET的汽車H橋DC電機(jī)控制參考設(shè)計

宣傳片

NextPower Live MOSFETs – 業(yè)界最佳SOA與RDS(on)

LFPAK封裝誕生20周年

如果您有支持方面的疑問,請告知我們。如需獲得設(shè)計支持,請告知我們并填寫技術(shù)支持表格,我們會盡快回復(fù)您。

請?jiān)L問我們的社區(qū)論壇聯(lián)系我們。


常見問題

Trench 6邏輯電平MOSFET的10 V VGS額定值是由我們小于1 ppm的故障率目標(biāo)決定的,這在當(dāng)時被評為最佳行業(yè)慣例。ppm故障系數(shù)未在任何數(shù)據(jù)手冊中給出,也不屬于AEC-Q101質(zhì)量標(biāo)準(zhǔn)的一部分。換言之,兩種器件可能都符合AEC-Q101標(biāo)準(zhǔn),但仍然具有不同的ppm故障率系數(shù)。

定義、表征和保護(hù)這些額定值的方法得到了改進(jìn),現(xiàn)在有可能在超過給定的10 V額定值的條件下工作。這將表示為時間、電壓和溫度的函數(shù)。進(jìn)一步說明見下文;更多詳細(xì)信息請參閱Nexperia應(yīng)用筆記AN90001。

附加信息
上述問題中有兩個關(guān)鍵詞值得進(jìn)一步探討——“額定值”和“邏輯電平”。

邏輯電平MOSFET主要用于驅(qū)動電壓為5 V的應(yīng)用
并據(jù)此進(jìn)行了相應(yīng)優(yōu)化。為了在相對較低的柵極電壓下實(shí)現(xiàn)全導(dǎo)通MOSFET和最佳導(dǎo)通電阻性能,這些MOSFET需要比以10 V VGS驅(qū)動的標(biāo)準(zhǔn)電平器件更薄的柵極氧化層。更薄的柵極氧化層會在較低的電壓下?lián)舸?,并且具有比?biāo)準(zhǔn)電平更低的額定值(完整詳情請參閱AN90001第5節(jié))。

但是在某些情況下,會為非邏輯電平應(yīng)用選擇邏輯電平MOSFET。例如,在汽車應(yīng)用中,電池電源電壓可能下降到驅(qū)動電路需要在6 V以下工作的水平。因此,MOSFET必須以低于標(biāo)準(zhǔn)電平MOSFET能夠提供的柵極電壓導(dǎo)通。相反,MOSFET柵極需要耐受約為12 V的標(biāo)稱電池電壓。

邏輯電平MOSFET適合嗎?
就性能而言,邏輯電平MOSFET不會在施加較高電壓時突然發(fā)生故障。但是,施加高于最大額定電壓的VGS會使小于1 ppm的故障率升高,因此Nexperia不會考慮在數(shù)據(jù)手冊中包含這些額定值。

通過在生產(chǎn)過程中進(jìn)行有效篩選,Nexperia消除缺陷并減少早期使用壽命故障的方法得以實(shí)現(xiàn)。作為供應(yīng)商,Nexperia致力于實(shí)現(xiàn)零缺陷和高質(zhì)量水平。因此,額定值可能會低于我們的競爭對手,他們對質(zhì)量的承諾可能不那么嚴(yán)格。Nexperia VGS的最大額定值基于在175℃下施加100%的最大(額定)電壓1000小時,故障率小于1 ppm——更多詳細(xì)信息請參閱:AN90001第4節(jié)。

當(dāng)數(shù)據(jù)手冊中的VGS額定為±20 V時,設(shè)計人員必須考慮邏輯電平MOSFET的故障率系數(shù)

Nexperia有一個模型,可用于計算較高的柵極電壓隨溫度變化的使用壽命故障率。此信息可根據(jù)要求以所計算系數(shù)的形式提供,僅供參考。

與前幾代產(chǎn)品一樣,額定值是基于滿足AEC-Q101要求而提出的。但是,Nexperia開發(fā)了一種新的測試方法,可確保在額定VGS下,整個使用壽命內(nèi)故障率小于1 ppm。這已應(yīng)用于Trench9,其VGS額定值已設(shè)置為滿足這一新要求。

附加信息
詳細(xì)說明請參閱AN90001

在Trench第3代器件(2008年)和Trench第6代器件(2012年)之間,Zth曲線的設(shè)置方法改變了。芯片尺寸也不同,這改變了Zth和Rth特性。

附加信息
較早的方法使用Zth (1 μs)和Rth的經(jīng)驗(yàn)?zāi)P鸵约爸笖?shù)線。

最新方法使用計算流體動力學(xué)(CFD)仿真生成的Zth模型,經(jīng)過了測量驗(yàn)證。

兩個器件中的芯片尺寸不同,因此Zth也不同。

圖1所示的曲線比較了單次Zth的數(shù)據(jù)手冊曲線。
兩個器件的極值線非常匹配。最大的差異是1 ms到20 ms之間的區(qū)域。

通過比較得出的結(jié)論是,Trench第3代器件用于在這些Zth限值內(nèi)工作。Trench第6代器件是一個很好的替代方案,極有可能滿足工作要求。

可以評估如何使用新規(guī)則對Trench第3代器件進(jìn)行評級,以更準(zhǔn)確地反映其真實(shí)性能。圖1表示兩條數(shù)據(jù)手冊線對比后的新線。

雖然在Rth上有一處差異,但可能并不重要。實(shí)際上,這是Rth(j-amb),是設(shè)計的限制因素。兩個器件的共性是印刷電路板(PCB)的Rth,占主導(dǎo)地位。

考慮BUK9Y30-75B的新舊測試方法時,另一個差異是小于10 μs的區(qū)域。

對于1 μs和2 μs之間的脈沖持續(xù)時間,Trench第3代器件中的溫升(或Zth(j-mb))僅為原始數(shù)據(jù)手冊曲線預(yù)測值的一半。這個因素的重要性取決于應(yīng)用。

這種理解是正確的。為確保MOSFET的可靠性,請始終將最高結(jié)溫限制在175 ℃。

附加信息

據(jù)了解,數(shù)據(jù)手冊中列出的典型熱阻值是基于受控條件得出的,不適用于典型應(yīng)用。
在半導(dǎo)體行業(yè)中,結(jié)溫為25 ℃的器件特性是公認(rèn)標(biāo)準(zhǔn)。用戶在這個溫度下進(jìn)行測量也最方便。

如何計算正確的熱阻?
Nexperia的MOSFET數(shù)據(jù)手冊中僅給出了熱阻的最大值。典型值遠(yuǎn)小于最大值。據(jù)了解,熱循環(huán)會導(dǎo)致Rth(j-mb)在MOSFET使用壽命期間增加。

數(shù)據(jù)手冊Rth(j-mb)最大值中包含了公差裕度,允許該值在MOSFET的使用壽命期間增加。

對于最壞情況的設(shè)計分析,請始終使用最大值。數(shù)據(jù)手冊中給出的最大Rth(j-mb)是通過特性測量評估得出。

其值不受溫度或其他環(huán)境條件限制。

如何計算結(jié)溫?

由于環(huán)境和/或MOSFET中的功耗引起的溫升,MOSFET通常在結(jié)溫高于25 ℃的情況下工作。

如果已知MOSFET的功耗和貼裝基底溫度(Tmb),就可以計算MOSFET的結(jié)溫。使用下面的公式(1)確定Tj。

(1) Tj = P × Rth(j-mb) + Tmb

MOSFET的SPICE熱模型提供了一種通過仿真估算Tj的好方法。在MOSFET的功耗隨時間變化時尤為有用。

BUK7Y12-40E的實(shí)例:

來自數(shù)據(jù)手冊:
25 ℃時的最大RDSon = 12 mΩ
175 ℃時的最大RDSon = 23.6 mΩ
2.31 K/W時的最大Rth(j-mb)

來自應(yīng)用數(shù)據(jù):
PWM頻率 = 100 Hz
最大占空比 = 50 % Vsupply = 14 V
Rload = 0.7 Ω
最高環(huán)境溫度 = 85 ℃
最高PCB溫度 = 100 ℃

基于平均功率計算,忽略因功率脈沖引起的任何溫度波動,也忽略100 Hz時的開關(guān)損耗:

假設(shè)MOSFET的初始溫度為100 ℃,其最大導(dǎo)通電阻為18 mΩ。它處于25 ℃時的12 mΩ和175 ℃時的24 mΩ之間。

傳導(dǎo)時,MOSFET功耗I2 X RDSon為:20 x 20 x 0.018 = 7.2 W

占空比為50%,因此平均功耗 = 7.2 x 0.5=3.6 W。假定可以忽略100 Hz時的開關(guān)損耗。

MOSFET結(jié)溫升高(貼裝基底以上)為:2.31 x 3.6 = 8.3 K。

在這種情況下,MOSFET的最高芯片溫度非常安全,為:100 + 8.3 = 108.3 ℃

為確保PCB溫度在85 ℃的環(huán)境中不會升高到100 ℃以上,PCB與環(huán)境之間的熱阻必須為:(100 - 85)/3.6 = 4.2 K/W

The customer is trying to achieve a Rth(j-amb) = 60 K/W using a dual N channel LFPAK56 (SOT1205).

Rth(j-amb) = Rth(j-mb) + Rth(mb-amb)

Rth(j-mb) is in Nexperia’s control (it is a function of the die size and package design, for example the bigger the die the lower the Rth(j-mb)). Rth(mb-amb) is a function of the PCB design and the thermal management scheme and is not under the control of Nexperia. A very good multilayer FR4 design with thermal vias would be around 30 - 40 K/W.

The Rth(j-amb) is dependent on the PCB design. As MOSFET manufacturers we do not determine this part of the system and the value would be meaningless, therefore. We have provided some examples in our application notes, please see LFPAK thermal design guide AN90003.

Rth(j-mb) tells you the temperature difference between the junction and mounting base for a given power profile. Because of the power dissipation the mounting base to ambient path will also heat up, causing the junction temperature to rise further. The junction to ambient is the full thermal path that needs to be considered and is a function of the PCB design too, please see AN90003 for more details.

The drain tab (mounting base) and source leads are the two main paths through which a down side cooling package dissipates heat. In fact, contrarily to some through hole packages (like TO-220), SMD packages such as LFPAK and D2PAK get rid of all the heat through the PCB. Hot air rises from the board and envelopes the device lowering the efficiency and thus the efficacy of any heatsink attached to the top of the plastic case. Instead, when a substantial power needs to be dissipated, copper traces, vias and planes are employed in order to lower as much as possible the Rth(j-a) of a device.

FloTHERM simulations and measurements carried out using LFPAK56 and variable power dissipation and PCB copper area show how, in steady state conditions, temperature taken on the top center of the case is, within a reasonably low accuracy, very similar to the junction temperature. This result is not due to heat being dissipated from the top of the case but rather from the one coming out of the PCB that increases the temperature of the surrounding air immediately close to the device, up to almost that of the junction.

Conduction is the predominant phenomena regulating heat flow from junction to mounting base. The resulting resistance is inversely proportional to the cross sectional area of the medium through which it propagates (die area) and directly to its thickness (drain tab). Given an LFPAK56E and an LFPAK88 with the same die size the former has lower Rth(j-mb) because the thickness of its drain tab is lower. It is worth noting, however, that the thermal path doesn't end here and that the LFPAK88 shows better thermal performances due to its lower Rth(j-amb) given by a much larger drain tab.

For a given die size the LFPAK88 shows an overall better transient thermal impedance Zth(j-mb).

The data sheet states the IS capability for the diode. The power constraints are the same as for the MOSFET conduction. The diode is an integral part of the MOSFET structure. They are in effect the same size and have the same thermal properties. The MOSFET can carry the same current through the channel or in reverse through the body diode. The maximum steady state current in the diode is dependent on the total allowed power loss for the device. However, the diode current may be different from the channel current because the power dissipation may be different under the 2 modes of operation.

When a MOSFET transitions from diode conduction to blocking state there is an additional loss, called the diode recovery charge (Qr). The Qr needs to be factored in the switching loss calculation of the application for accurate analysis. This switching transition also impacts on the EMC performance and needs careful consideration - see AN90011 and TN90003 for more details.

The most important factor in current derating or power derating is junction temperature. Tj is a function of power dissipation. Power dissipation is a function of ID current and on-state resistance (P = I^2 × R) when operating in the fully enhanced mode. It is the product of ID and VDS when operating between on and off states. The RDS(on) of a MOSFET, increases with increase in temperature. Therefore, for a given maximum power dissipation, the maximum current must be derated to match the maximum power dissipation. In Nexperia data sheets, graphs show the continuous drain current and normalized total power dissipation as a function of the mounting base temperature. These graphs can be used to determine the derating.

If current, voltage, power, junction temperature, etc. are within Nexperia data sheet limitations, no additional derating is needed. In the data sheet, there is a power derating curve based on junction temperature. Junction temperature (Tj) is one of the most important factors for reliability. Particular care should be taken to extract enough heat from the device to maintain junction or die temperature, below rated values. The device should be operated within the SOA region. It should be de-rated if necessary as recommended in the data sheet and it should be possible to obtain optimum reliability.

As an example, assume that the temperature required is 100 °C, instead of 25 °C. Tj rated is 175 °C for this automotive grade MOSFET. To de-rate when considering the effect of temperature on SOA performance the current must be reduced. To determine the new current (at temperature) for a fixed voltage, use the power derating line. For example, power at 100 °C = 50 % of power at 25 °C. Therefore, the 1.0 A line represents 0.5 A at 100 °C etc. It is explained in Application Note AN11158. If necessary, the SOA lines for 1 ms, 10 ms etc. can be extended at the same slope to the right.

The Spirito region or hot spotting issue with new higher density technologies may have more effect in the linear mode of operation. This effect is evident from the change in gradient in the limit lines for 1 ms, 10 ms and 100 ms at higher VDS values. The 1 ms, 10 ms, 100 ms and DC lines at higher VDS values emphasize it. The reason is that most newer technologies pack more parallel fundamental cells to share more current in a smaller die (lower RDS(on) per unit area). It  leads to an increased thermal coupling between cells. Also, to attain higher current densities, the MOSFETs are designed with higher transconductance or gain (gfs = ID/VGS). It enables them to carry higher currents even at lower VGS values. However VGS(th) (threshold voltage) has a negative temperature coefficient which leads to a higher zero temperature coefficient crossover value. For various reasons, the distribution of temperature in the die is never perfectly uniform. Therefore, when the device is operated for extended periods in linear mode, hot spotting occurs. Due to the shift in threshold voltage, there is a risk of thermal runaway and device destruction where the hotspots form. Because of these reasons, special care should be taken when using trench or planar MOSFETs for linear applications. Ensure that operation remains within the data sheet SOA limits.

The inflexion points on the 1 ms and 10 ms lines represent the points where the ‘Spirito’ effect starts. At higher ID, the lines represent constant power (P); at lower ID, P decreases as ID

decreases. The 100 ms and DC lines are straight, but have higher negative gradients than constant power lines, i.e. power also decreases as ID decreases. The flat portion of the DC line represents package maximum ID.

The Spirito effect is a form of electro-thermal instability i.e. uneven die heating leading to hot-spot formation. It happens because VGS(th) has a Negative Temperature Coefficient (NTC) at ID values below IZTC (zero temperature coefficient current). The consequence is to reduce MOSFET power dissipation capability in lower ID zones of the SOA chart.

Measurement at DC, 100 ms, 10 ms and 1 ms establishes SOA capability. The 100 μs and 10 μs lines on this graph are theoretical constant power lines. They are realistic, as the Spirito effect is much less significant at higher currents and shorter pulse periods.

Reliable 100 μs SOA measurement capability has recently been achieved, so future data sheets can include 100 μs SOA lines based on measured data. It is now evident that the Spirito effect is apparent at 100 μs. Consequently, from 2016, some new MOSFET releases have a measured 100 μs SOA line in their data sheet SOA graph.

See AN11158 for further information.

The factors influencing the compliance of the MOSFET with the data sheet SOA graph are:

  • the uniformity of the MOSFET cells across the active (trench) surface of the die
  • the integrity and uniformity of the die attachment (the solder layer between the die bottom (drain) surface and mounting base)

Cell uniformity must be good for the MOSFET to work. However, cell uniformity can never be perfect and there is always some variation between cells.

The integrity of the soldering to attach the die must be good without voids or die tilt. If not, the local (junction to mounting base) thermal impedance varies with location across the die. It gives uneven cooling. Uneven die surface cooling may be due to either or both of the factors stated. However, the consequence is the same i.e. SOA non-compliance with the data sheet graph.

In production, linear mode power pulse tests are used to stress the MOSFET thermally. If the die cooling is not sufficiently uniform, hotspots can form and the device parameters can change more than expected. A decision to reject parts can be made based on the results.

While all Nexperia MOSFETs can be used in linear mode operation, some Nexperia MOSFETs are designed specifically to be used in linear mode. The device description in the data sheet states that the device is suitable for operation in linear mode. To determine the suitability for operation

in linear mode, perform a thorough analysis of the SOA graph. This analysis includes derating the SOA graph for junction temperatures above 25 °C. The naming convention indicates that the MOSFET is designed for linear mode applications.

Even if a MOSFET is intended for use in linear mode applications, the part must not be operated outside its SOA. Post 2010, all Nexperia MOSFETs have a measured SOA characteristic. The limit of linear mode capability on Nexperia parts is shown in the SOA characteristic. As a result, the boundary of what is safe is established via measurement rather than calculation. The Spirito capability limit is shown in the SOA characteristic.

In general - Yes, but Nexperia Trench MOSFETs are designed to suppress this effect. The trench structure, unlike planar, can be very easily designed to suppress parasitic turn on of the BJT. For new Nexperia MOSFET technologies, the failure mechanism is thermal, which represents the limit of achievable UIS performance. In the trench case, a design feature in the source contact effectively short circuits the base-emitter of the parasitic BJT. In older planar technology, the shorting of base to emitter of the parasitic bipolar is not as effective. It is due to the longer path length in the n and p regions.

All MOSFETs are susceptible to failure during UIS. It depends on whether the MOSFET Tj reaches the intrinsic temperature of silicon. Furthermore, if the parasitic BJT is triggered, they can fail even earlier. It is because the BJT can be switched on relatively quickly but is slow to switch off. Current can then crowd in a certain part of the device and failure results. Newer Nexperia trench technologies are less vulnerable to triggering of the BJT than planar designs.

The base emitter path in the silicon design is designed to minimize the risk of triggering the parasitic BJT.

UIS testing is a fundamental part of Nexperia's defect screening procedures. It is applied to all devices. The test is designed to increase the junction temperature to Tj(max).

Devices fail at the thermal limit. At the thermal limit, the silicon becomes intrinsic and blocking- junctions cease to exist. It is considered to be the only UIS-related failure mechanism in our devices.

Avalanche current versus time graphs are based on conditions that take a device to Tj(max) and therefore, our ruggedness screening covers them. All Nexperia MOSFETs are ruggedness tested during assembly and characterized during development. The graphs are accurate and provide the worst case capability of the device to ensure reliability.

A temperature rise model is used, which is shown in AN10273 Power MOSFET single-shot and repetitive avalanche ruggedness rating.

No. The repetitive avalanche ratings are lower than the single pulse rating. Refer to the product data sheet for the device capability. Refer to AN10273 Power MOSFET single-shot and repetitive avalanche ruggedness rating.

The device can sustain small amounts of damage with each avalanche event and over time they can accumulate to cause significant parametric shifts or device failure. Nexperia has performed research into this area and provides the repetitive ratings in the data sheet. See also Nexperia Application Note AN10273 Power MOSFET single-shot and repetitive avalanche ruggedness rating.

There are two failure modes: current (parasitic BJT turn-on) and thermal. Cell density has implications for these failure modes.

Example - A device has an avalanche event once in two months so how many cycles of such an avalanche frequency can the device sustain? This question relates more to quality and reliability but it is important nonetheless.

For the answer to this question, refer to Section 2.4.3 of AN11158 and all of AN10273.

The current specified in the avalanche graph should not be exceeded. It is restricted to the DC rated current. The device factory test defines the limit which is guaranteed for the device.

The avalanche rating is modeled first and the results are then verified by testing to destruction. The test circuit used is similar to the one defined in JESD24-5. For SPICE modeling, the reverse diode characteristics can be defined and modeled. By adding an RC thermal model of the Zth characteristic, it is possible to estimate the Tj of the device.

The repetitive line is the line for a start temperature of 170 °C. It is because it predicts a temperature rise of 5 °C which is the maximum permissible rise from any starting temperature (see AN10273). It also corresponds to 10 % of the single-shot current using the same inductor value.

The capacitive dV/dt turn-on is strongly circuit dependent.

If the dV/dt across the MOSFETs drain to source is too high, it may charge CGD, which is the capacitance between drain and gate, inducing a voltage at the gate. The gate voltage depends on the pull-down resistor of the driver based on Equation (4).

In some bipolar drive circuits, such as emitter follower derived circuits, the problem is increased. It is because the driver cannot pull the gate down to 0 V and has approximately 0.7 V offset.

It is also important that the driver is referenced to the MOSFET source and not to signal ground, which can be significantly different in voltage.

The ratio of CGD to CGS is a factor but a good drive circuit is the critical factor.

Even if a VGS spike is present, it is safe for the MOSFET as long as the dissipation is within thermal limits and MOSFET SOA limits.

Nexperia MOSFETs are designed with a high threshold at high temperatures and we check VGS threshold at 25 °C is within data sheet limits. Logic level devices are designed and guaranteed to have a minimum threshold voltage >0.5 V even at 175 °C.

It is usually measured in a half-bridge test circuit. It is a measure of the device dV/dt during body diode reverse recovery. This data is not normally published in the data sheet. This dV/dt is in practice the highest dV/dt the device experiences.

High dV/dt can induce glitches onto the gate of the MOSFET. A snubber can help to reduce dV/dt and the magnitude of the VDS spike if significant. The ratio of Coss at low VDS compared to Coss value at high VDS is an indicator of the non-linearity of Coss. A very high ratio can indicate that the device can generate a high dV/dt. Gate driver circuit design can reduce the gate glitch. The ratio of QGD to QGS and the gate threshold voltage can be used to indicate the susceptibility of the device to gate glitches.

Soft recovery does reduce the dV/dt. Although dV/dt is not an issue for the MOSFET, a lower dV/dt is better for EMI, voltage spikes and crosstalk. The design and manufacture is very specialized, involving proprietary information.

At high temperatures, it is easier to trigger a parasitic bipolar as its VBE reduces. But if the BJT is effectively shorted out and current diverted away from it, then it is not an issue.

The aim is to obtain a dV/dt value to check if parasitic BJT turns on, leading to device failure. It is impossible to measure the characteristics of the parasitic bipolar transistor as its terminals cannot be accessed independently of the MOSFET terminals. A parasitic bipolar transistor is always created when a MOSFET is fabricated.

It is sometimes referred to as gate bounce. MOSFETs have internal stray capacitances coupling all three terminals and the gate is floating. The capacitors are inherent to the internal structure of a MOSFET.

CGD and CGS form a capacitive potential divider. When a voltage appears across the drain and source of the MOSFET, it couples to the gate and causes the internal gate source capacitor to charge. If the voltage on the gate increases beyond the MOSFET's threshold voltage, it starts to turn back on which can cause cross conduction. The ratio of the capacitances CGD and CGS determines the severity of this effect.

If improved thermal resistance is required, vias can be added to the footprint. The effect of adding vias is discussed in Section 3.5 of AN10874.

We do not perform any HV isolation tests on any automotive MOSFETs or specify any HV isolation parameter in our data sheets. Insulation testing is only applicable to TO-220F packages (Nexperia SOT186A)

Environmental conditions: 4-layer FR4 board at 105 °C ambient temperature.

Although it is possible to reduce efficiency, other factors become the constraints.

There is a strong similarity between the data sheet characteristics and the Nexperia SPICE models at 25 °C. It is especially true for transfer curve, RDS(on), diode characteristic, and gate charge. The SPICE model also accounts for the package parasitic resistances and inductances.

The SPICE models provided by Nexperia are generated from measurements performed on a sample of devices. Several parameters such as transfer characteristics, output characteristics

and gate charge are used. Values for parasitic package impedances and the data sheet maximum RDS(on) value are combined to produce a model that emulates the behavior of the sample MOSFETs.

  • It is important to note that the SPICE models generated by Nexperia:
    • represent typical parts that can be found within the production distribution.
    • are set close to the maximum RDS(on) of the part without adversely affecting the other model parameters.
    • are only valid for Tj = 25 °C.

Customers wishing to do design validation using a SPICE model, are advised to proceed with caution given the information provided above. Nexperia encourages designers to perform Monte Carlo simulations and use tolerance stacks in their simulation design. These factors permit part to part variation of their whole system to be accounted for.

Nexperia can advise on what reasonable levels of tolerance on key parameters for the MOSFET would be.

Drift engineering is optimizing of the drift region between the bottom of the trench and the epi/ substrate interface (light green area). The drift region supports most of the drain-source voltage in the off state. The purpose of drift engineering is to reduce the resistance of the drift region while maintaining the drain-source breakdown voltage V(BR)DSS capability.

Reduced cell pitch generally results in lower resistance and higher capacitance. The goal of each new generation of MOSFET technology is to reduce RDS(on) without a large increase in capacitance that usually accompanies reduced cell pitch. Reduced cell pitch also reduces SOA capability (linear mode operation) but improves avalanche capability.

Shorter channel gives a lower RDS(on) and a lower CGS capacitance simultaneously. It has higher leakage current and the transfer curve (ID versus VGS characteristic) becomes more dependent on VDS. It is also observed in the output characteristics.

Thick bottom oxide refers to gate oxide at the bottom of the trench. It is made thicker than the gate oxide at the side of the trench. It acts as a thicker dielectric between the gate and the drain resulting in a much lower CGD value.

Nexperia continues to supply older products where the volumes of manufacture are economically viable. The sales price margin is commercially viable and there are no manufacturing reasons which prevent manufacture.

A Discontinuation of Delivery (DoD) document notifies key customers (including distributors), when a part is planned to be withdrawn. It allows customers to make arrangements to buy sufficient products for future requirements and if necessary qualify alternative products.

We have a detailed application note on this subject, AN90011, please refer to this for any EMC related concerns.

The key parameters are the gate oxide breakdown voltage and the gate input capacitance (Ciss). JESD22-A114 specifies the ESD Human Body Model test arrangement and results assessment criteria.

This formula estimates the ESD capability:

Vesd (HBM) = 16 × VGS(max) × Ciss (nF)

Yes. The ESD rating relies upon Ciss and gate oxide breakdown voltage. As Nexperia improves technology and the levels of quality and reliability also improve new generations tend to have stronger gate oxides. However as we improve our switching figure of merit (QG × RDS(on)), now for the same RDS(on) new technologies will have lower Ciss and therefore lower ESD rating.

In order to effectively screen MOSFETs with weak gate oxide and achieve <1 ppm quality levels, Nexperia uses special test techniques which involve accurately measuring the gate-source leakage behavior. Adding ESD protection networks means that it becomes very difficult to measure the gate-source leakage characteristics of the gate oxide because the ESD protection network will have a significantly higher leakage current. This means we cannot screen out weaker oxides and will result in a higher field failure rates. Furthermore, adding protection networks results in higher production costs. ESD protection networks are therefore only used where necessary.

Generally, for larger MOSFETs with good gate oxide quality and relatively high Ciss there is no need for ESD protection, as long as these are being mounted onto a PCB in a controlled ESD environment. For special applications where the MOSFET would be subjected directly to ESD in a finished product such as a lithium ion battery module or a power or signal port then on-chip ESD protection may be required to meet IEC 61000-4-2 or other ESD test specifications. Some very small MOSFETs from Nexperia may require on chip ESD protection networks in order to allow handling (such as NX3008NBKW), even in well controlled manufacturing environments.

The fundamental relationship between drain leakage current and temperature is exponential in form. The data sheet gives maximum values of IDSS at Tj = 25 °C and 175 °C.

Although these two parameters reference the voltage rating of the part, they look at different characteristics of the product. Drain leakage current (IDSS) is the current which flows when VDS equal to the rated voltage is applied. The test checks that the current is below the limit.

The breakdown voltage of a device V(BR)DSS is the VDS required to cause a drain current of 250 μA to flow. In practice it is slightly higher than the rated voltage of the device and the actual voltage varies for the same nominal type due to manufacturing variations. The minimum V(BR)DSS stated in the data sheet is the rated voltage. Breakdown voltage looks at the characteristic of the part when it is in avalanche. The mechanisms causing leakage current and avalanche current are different.

Nexperia has a high degree of confidence that this scenario would be OK even in the worst case. However, it cannot be 100 % guaranteed by a production test at 25 °C.

The following principle could be applied to any Nexperia MOSFET technology at any breakdown voltage rating. In the data sheet, the values for minimum drain-source breakdown voltages are specified at -55 °C and 25 °C. The correlation between V(BR)DSS and temperature is approximately linear over this range. Therefore, a straight line can be plotted at Temperature (-55 °C and 25 °C) versus V(BR)DSS (at -55 °C and 25 °C).

For example: a 40 V Trench generation 6 part, has a V(BR)DSS at -55 °C of 36 V and 40 V at 25 °C. Using linear interpolation, gives a V(BR)DSS of 36.75 V at -40 °C.

Unfortunately, Nexperia cannot supply values for these capacitances at the extremes of the MOSFET operating temperature range requested. It is due to the limitations of our parametric test equipment. However, we can comment on how these capacitances vary with temperature and the MOSFET terminal voltages.

Ciss is the input capacitance formed by the parallel combination of CGS and CGD, and  CGS dominates. CGS is formed across the gate oxide so it does not vary significantly with

temperature or the MOSFET terminal voltages. As CGS depends on gate oxide thickness and other defined die feature dimensions, it should not vary much between samples.

Crss is the reverse transfer capacitance which is essentially the gate-drain capacitance (CGD).  It is formed across the MOSFET body diode depletion layer. This layer becomes thicker, as the reverse voltage (VDS) across it increases. Crss increases as VDS decreases. Crss has a greater variability than Ciss because it depends on the body diode depletion layer.

Coss is the output capacitance formed by the parallel combination of CDS and CGD. The drain- source capacitance (CDS) also dominates this capacitance. It varies with VDS in a similar way to Crss varying with VDS and it has similar variability to Crss for the same reasons.

It has been observed that switching losses only slightly increase at Tj(max), in the order of 10 %, since the capacitances only marginally change. Other factors can influence switching behavior, especially where the gate driver current capability changes significantly with temperature. The depletion layer thickness varies in proportion to the square root of the absolute temperature in K and it affects Crss and Coss.

The measured RG value is in the range of 1 Ω to 3 Ω and it does not vary significantly with temperature. In our general MOSFET characterization, it is presently not possible to test RG over the temperature range.

The minimum current that is expected at a VDS of 0.1 V can be calculated from the maximum (175 °C) RDS(on) value (26 mΩ).

The drain current that flows with these conditions is 0.1/0.026 = 3.846 A. The maximum die temperature is the critical factor. Do not allow it to exceed 175 °C.

However, if the RDS(on) is not at the top limit of the value range or the die temperature is lower, it is lower. As a result, the corresponding drain current is proportionately higher.

The maximum RDSon is 11.5 mΩ at Tmb = 25 °C. The maximum die temperature is likely to be higher than 25 °C in most applications.

If the mounting base temperature is maintained at 100 °C or less, the (fully ON) MOSFET can safely carry a continuous current up to 35 A.

The (fully ON) MOSFET can also sustain a current pulse of 204 A for a period up to 10 μs.

The ratings given on the data sheet are for each individual MOSFET in this device.

Although there are two MOSFETs housed within the package, they are fully electrically isolated from each other.

However, as the MOSFETs share a common package, there is a small amount of thermal coupling between the two MOSFET dies through the plastic package material. The heat generated by the power dissipated in one MOSFET increases the temperature of the other, even though the other may not be dissipating power. In an application, there is also an external thermal coupling path via the PCB to which the device is mounted. In practice, it is the main thermal coupling mechanism between the two dies.

To guarantee long-term reliability, it is very important that the junction temperature of either of the dies is never allowed to exceed 175 °C.

The individual MOSFET mounting bases are the main exit routes for heat generated in the dies. In practice, the mounting bases are soldered to copper pads on a Printed-Circuit Board (PCB). They provide the electrical connections to the MOSFET drains and heat sinking. Both MOSFETs in the package should operate at their rated power/current when their mounting bases are maintained at 25 °C. However, it is very difficult to achieve in practice and de-rating must be done in most cases.

Data from a T9 MOSFET family device BUK7J1R4-40H is considered but the principle can be applied to T6 devices also. The plateau voltage in the gate charge characteristic is the horizontal portion of the Gate-source voltage as a function of gate charge graph (see Fig 13. in datasheet); and is related to the transfer characteristic (Fig. 8).

The plateau voltage is around 4.25 V typical for a current of 25 A. This corresponds to the value in the transfer curve, also for a typical device. So at -55 °C then the plateau voltage will be 4.35 V and at 175 °C it will be 3.9 V for a typical device.

When considering a “worst case” device then the spread in gate threshold VGS(th) needs to be considered. It is assumed that the gain (transconductance) of the device is not affected by the same process related reasons which affect VGS(th). The transfer curve for a typical device would be shifted along the VGS axis according to the delta in the VGS(th).

The plateau voltage at the 25 A test condition would be 3.65 V for minimum VGS(th) and 4.85 V maximum VGS(th).

Consider a specific example such as BUK9K52-60E. See table 1 in the datasheet for capability.

The key point is the Ptot of 32 W. This is per die at data sheet conditions which assume that the mounting base is maintained at 25 °C. The maximum DC current allowed in each device would be

16.04 A, based on RDSon of 124.3 mΩ (VGS= 5 V) at 175 °C.

If both devices in the package are considered then the total power dissipation when both mounting bases are maintained at 25 °C is 32 W x 2 = 64 W. This only applies when the mounting bases of the devices are maintained at 25 °C (using an infinite heatsink). The power capability will decrease as the mounting base temperatures increase such that Tj does not exceed 175 °C. Consequently the current will decrease as shown in the Fig 2 in datasheet of ID vs Tmb, if the mounting base is maintained at a different temperature such as 125 °C, the current rating would be 9.26 A.

FIT (Failure In Time) is commonly used to express component reliability. It is defined as the number of failures occurring in 1 × 1000000000 hours (1 billion hours).

At any elapsed time (t), the reliability (R) of a group of operating semiconductors is: R(t) = (no - nf)/no

Where:

no is the original sample size and nf is the number of failures after time t.

Over the standard time of 10^9 hours, it approximates to F = (1/no)*(nf/t)*1000000000.

交叉參考

午夜激情视频福利在线观看| 91九色视频在线观看| 国产午夜精品一区理论片| 亚洲国产av一区二区三区| 亚洲一区二区黄色录像| 国产传媒小视频在线观看| 韩国三级一区二区三区| 人妻人人澡人人添人人爽桃色| 中文人妻无码一区二区三区在线| 欧美日韩国产成人高清视频| 91久久国产精品91久久性色| 9久精品久久综合久久超碰1| 美味人妻手机在线观看| 四虎亚洲中文在线观看| 一本色道久久亚洲av红楼| 一区二区三区人妻在线| 成人三级在线播放线观看| 色哟哟一区二区三区四区视频| 极品人妻手机视频在线| 在线观看永久免费黄色| 免费观看av在线播放| 草草影院黄色在线观看| 青青青在线视频免费播放| 搡女人真人视频不用下载 | 99国产欧美久久久精品蜜桃| 亚洲一区国产午夜福利| 蜜桃久久精品一区二区| 可以免费看的欧美黄片| 这里都是精品熟女内射| 公侵犯人妻中文字幕一区| 亚洲高清中文字幕综合网| 鸡鸡插屁股视频日韩在线免费观看| 人妻精品久久一区二区| 99国产精品九九视频免费看| 亚洲一区二区三区网址| 国产a级久久久精品视频| 欧美情欲片一区二区三区| 亚洲AV元码天堂一区二区三区| 亚洲熟女国产午夜精品| 国产亚洲精品成人av一区| 日韩推理片2021电影在线观看| 中文字幕中文有码在线| 日韩精品一区二区三区视频放| 中文字幕中文字幕乱码| 玖玖资源网站最新网站| 亚洲日本精品熟女视频| 亚洲一区日韩二区精品| 国产另类在线欧美日韩| 免费国产高清在线观看最新| 欧美日韩午夜在线一区| 中文字幕中文有码在线| 国产999精品老熟女唐老鸭| 成年女人喷潮毛片免费播放| 淫妇小穴好爽啊出水视频| 大鸡巴暴草美女的小骚逼| 日韩AV在线一区二区三区合集 | 亚洲av一区一区二区三| 大白屁股精品视频国产| av亚洲中文字幕精品| 91麻豆国产自产在线观看亚洲| 夫妻性生活一级黄色大片| 日本到在线高清视频观看| 国内少妇自拍视频专区| 综合成人欧美网日韩青椒网| 精品一区二区三区毛片无码18| 中文字幕婷婷丁香色五月| 毛片内射一区二区三区| 中文字幕人妻丝袜一区一三区| 在线观看日韩一区二区视频| 中文字幕在线av电影| 免费看美女私人部位的直播| 青青草青青草在线观看视频| 国产在线观看码高清视频| 动漫无遮羞视频在线观看| 视频一区中文字幕在线观看| 国产亚洲一区二区视频在线| 精品国产尤物黑料在线观看 | 美国女人大兵的大鸡巴操男人的逼 | 国产精品为爱搞点激情| 赿南美女拳交操逼视频大片| 男生操女生小逼爽爽爽看看 | av网站在线观看亚洲国产| 一区二区不卡国产精品| 不卡av免费在线网址| 菠萝菠萝蜜在线视频在线播放| 无码av一区二区三区四区| 亚洲大尺度无码无码专线一区| 未满十八网站在线观看| 成人一区二区三区在线观看| 久久久成人亚洲精品无码| 一区二区三区婷婷中文字幕| 懂色av噜噜一区二区| 欧美激情网页一区三区| 免费 无码 国产在线观| 草骚逼美穴骚逼美穴骚逼美穴骚逼 | 国产精品欧美精品日韩精品| 国产黄色性生活一级片| 美国女人大兵的大鸡巴操男人的逼 | 在线播放免费人成日韩视频| 亚洲中文字幕有码视频| 超大鸡巴操处女小骚逼免费视频 | 黄色网色网色网色网色| 超性感美女被狂日高潮免費視頻| 欧美一区二区三区播放| 亚洲一区二区av高清| 国产免费一区二区三区最新6 | 男人抚摸亚洲女大学生的大胸| 国产黄色网页在线观看| 国产人碰人摸人澡人视频| 中国一级全黄的免费观看 | 国产片高潮抽搐喷水免费| 亚洲精品制服丝袜中文字幕乱码| 一区二区三区人妻在线| 国产亚洲精品成人av一区| 一区二区三区欧美影片| 欧美高清精品视频在线| 青青草原在线视频首页网站| 男生操女生的逼视频海量免费| 国产传媒第一页在线观看| 极品美女高潮精品16p| 男人和女人插插视频免费看| 偷拍偷窥女厕一区二区视频| 边吃奶边摸下我好爽免费视频| 国产日本亚洲精品在线一二三四| 日韩精品在线视频vvv| 卡通动漫一区二区综合| 在线观看永久免费黄色| 在线观看性生活免费看| 久久综合中文字幕一区二区| 亚洲国产中文剧情av鲁一鲁| 自由成熟性生活免费视频| 国产乱码精品一区二区三区播放| 成年女人喷潮毛片免费播放 | 大奶女人被操逼操的崩溃| 中文字幕中文字幕乱码| 白白色视频免费在线观看| 91福利免费体验区试看藏经阁| 日韩 国产 精品 亚洲 欧美 | 久久久国产综合av天堂| 精品日韩一区二区三区| 国产自产拍午夜免费视频| 韩国女主角男女裸体操逼鸡巴操逼| 亚洲av天堂在线免费观看| 中文字幕中文有码在线| 要肉棒插死骚货黄色视频| 国产一二三在线不卡视频| 亚洲国产日本韩国福利在线观看 | 国产精品区第二页尤自在拍| 超碰人人爽爽人人爽人人| 精彩视频尤物视频在线| 在线观看性生活免费看| 美女被草视频免费网站| 一级a做片免费观看久久| 久久精品国产亚洲欧美成人| 免费黄色国产精品日更| 久久久午夜福利免费视频| 国产午夜精品一区二区三区视频 | 亚洲一区日韩二区精品| 在线人妻无码中文dvd视频| 91综合精品国产九色| 国产精品久久久精品免费| 欧美91精品一区二区三区| 国产综合色在线视频观看| 男人鸡巴插进女人B里的视频| 欧美乱妇高清无乱码亚洲欧美| 成人精品一区二区三区不卡| 亚洲av毛片免费观看| 9久热久re爱免费精品视频| 亚洲国产午夜福利视频| 91福利国产在线观看香蕉| 欧美视频中文字幕视频日韩视频 | 99国产精品黄色片子| 在线观看亚洲欧洲精品| 色欲av一区二区三区精品| 国产一区二区精品播放| 亚洲精品制服丝袜中文字幕乱码| 久久精品av免费观看| 欧洲老太太肛交内射视频| 131美女爱做视频高清在线| 亚洲另类激情综合偷自拍| 水蜜桃美女对机机小骚逼| 国产av人人夜夜澡人人爽软件| 亚洲欧美日韩欧美一区二区三区| 欧美日韩国产精品系列区| 男人大鸡巴插进美女逼里视频强奸| 人妻中文av无码字幕久久| 亚洲无线码中文字幕在线| 性夜国产夜春夜夜爽三级| 成年美女黄网站大片免费| 大鸡巴暴草美女的小骚逼| 日本一区二区三区女优在线| 一本色道久久88综合日韩| 大鸡巴暴草美女的小骚逼| 久久久久亚洲av成人网热| 男生大肉捧插女生的视频| 亚洲嫩模三级片中文字幕| 青青草99久久这里只有精品| 国产三级在线观看官网| 国产97在线精品一区| 久久久无码精品亚洲日韩18禁| 日韩 国产 精品 亚洲 欧美| 神马午夜伦理精品亚洲| 成人三级在线播放线观看| 99久久午夜精品一区二区欧美| 中文字幕一区二区三区乱码| 尹人大香蕉在线精品视频| 一级国产片在线观看免费 | 久热热久这里只有精品国产| 精品国产尤物黑料在线观看| 国产又色又爽又黄的视频多人| 亚洲美女一区二区暴力吞精| 亚洲香蕉视频综合在线| 黄色国产精品视频入口| 一级a做片免费观看久久| 欧美日韩视频在线综合| 日本剧情片在线播放网站| 操逼肥的一线天白虎女人 | 日韩欧美在线观看黄色| 国产午夜精品一区二区三区视频 | 亚洲免费视频区一区二| 无遮挡男女一进一出视频真人| 午夜老湿机福利免费观看| 亚洲最大最粗最猛视频| 欧美乱妇高清无乱码亚洲欧美| 日韩一区二区在线精品| 久久久久亚洲av成人网热| 国产精品午夜福利在线观看| 成人经典视频免费在线| 久久久久久曰本av免费免费看| av精彩天堂在线观看| 国产一区二区三区二区| 亚洲婷婷熟妇熟女在线| 99国产精品九九视频免费看| 久久免费看美女高潮视频 | 我要大鸡吧在线观看免费| 大鸡巴插学生妹骚逼视频| 欧美日韩另类精品激情| 久久精品国产在热亚洲| 免费观看av在线播放| 青草精品视频在线播放| 香蕉av秘 一区二区三区| 国产黄片一级二级三级| 深夜福利一区二区在线观看| 一级国产片在线观看免费| 国产亚洲一区二区三区精品久久 | 国产郑州性生活免费| 国产爽又爽视频在线观看| 白色紧身裤无码系列在线| 国产精品欧美精品日韩精品| 91中文字幕国产精品| 中文字幕中文有码在线| 不要抽骚货的骚逼了视频| 国产自拍偷拍在线福利| 亚洲精品精品日本日本| 国产一级性生活片免费观看| 北海莫菲尔国际精品酒店| 一级做a爰片久久毛片毛片 | 男生使劲操女生下面视频国产| 亚洲精品乱码在线播放| 亚洲一区二区精品免费观看| 日韩特黄特色大片免费看| 日本高清少妇一区二区三区 | 一级a做片免费观看久久| 一本大道加勒比久久综合| 欧美黄色成人在线电影| 中文字幕 乱码 中文乱码视频| 97国产精品97久久| 欧美激情视频一区 二区| 久久99这里只有免费费精品| 欧美系列一区二区三区在线播放| 国产精品久久久精品免费| 一本色道久久亚洲av红楼| 2022AV亚洲天堂在线观看| 久久999国产高清精品| 亚洲欧美日韩偷拍丝袜| 亚洲一区二区三区网址| 日韩欧美亚洲国产精品幕久久久 | 夜夜爽狠狠天天婷婷五月| 一区二区三区亚洲精品| 国产一二三在线不卡视频 | 又黄又爽有无遮挡的网站| 综合色欲久久精99999| 啊啊草死我爽日本在线观看| 成人精品一区二区夜夜嗨| 人人爽人人澡人人人人妻| 国产精品女同性一区二区| 亚洲av不卡一区二区不卡| 污污污视频在线观看免费视频| 美国俄罗斯毛片一区二区| 肉棒插小穴视频你懂得分享| 久久99精品久久久久久手机免费| 精品国产av一区二区三区蜜臀| 亚洲少妇插进去综合网| 色哟哟一区二区三区四区视频| 大鸡巴插入少妇骚穴视频| 91中文字幕在线永久| 色欲av一区二区三区精品| 在线观看亚洲欧洲精品| 久久久精品欧美中文一区二区三区| 国产学生粉嫩在线观看在| 亚洲热女乱色一区二区三区| 91精品综合国产蜜臀久| 国产蜜臀av在线一区在线| 久久999国产高清精品| 爽爽午夜福利视频一区二区| 亚洲欧洲日?国码久在线| 精品人妻一区二区三区中文字幕| 久久狼精品一区二区三区| 精彩视频尤物视频在线| 搡女人真人视频不用下载 | 欲求不满人妻av中文字幕| 美女扒开屁股让男人桶大奶子骚逼| 俄罗斯美女扒开B口B毛男人玩吗| 中国一级全黄的免费观看| 成年人大片在线观看视频| 国产黄色污一区二区三区| 骚货操死你捅死你骚逼视频| 国产精品国产三级国产av闹| 亚洲综合一区二区三区精品| 亚洲av无码乱码国产精000| 亚州欧美大鸡巴操肥逼逼| 亚洲色图偷拍一区二区| 18精品久久久无码午夜福利| 美艳人妻办公室抽搐呻吟| 91九色成人在线观看| 亚洲最新尤物在线视频| 久久人妻久久人妻涩爱| av中文字幕潮喷在线观看| 亚洲人人妻人人爽av| 91久久国产精品91久久性色| 欧洲老太太肛交内射视频| 男人把女人捅到爽爆免费视频| 五月婷婷丁香激情对白一区二区| 久久久精品欧美中文一区二区三区| 波多野结衣在线观看一区二区三区| 色综合久久久中文字幕波多| 淫荡女人水嫩嫩逼爆肏视频| 人人爽人人澡人人人人妻| 成人性爱大阴茎视频高甜 | 青青草99久久这里只有精品| 国产aa视频一区二区三区| 亚洲av日韩av高清在线播放| 无码av一区二区三区四区| 啊好爽操我逼快用鸡巴操我视频| 天堂av毛片免费在线看| 亚洲国产精品一区二区三区四区| 可以免费看的欧美黄片| 蜜桃99视频在线观看| 久久久久久久久久久久新| 国产欧美日韩综合精品二区| 裸体美女让男人桶免费视频| 午夜福利观看在线观看| 啊我要吃大鸡巴 插到骚逼里好大| 高清女厕偷拍一区二区三区| 骑乘少妇喷水高潮69av| av永久网站在线观看| 国产免费一区二区三区最新6| 久久综合九色综合97| 国产精品天干天干在线下载| 日韩色视频一区二区三区亚洲| 精品中文字幕一级久久免费 | 玖玖资源网站最新网站| 午夜老湿机福利免费观看| 欧美激情日韩精品久久久| 欧美日韩精品在线观看| 懂色av噜噜一区二区| 97精品视频在线观看| 日本一区二区高清视频在线观看 | 成人国产激情自拍视频| 美女国产黄色三级片在线播放| 青青青国产在线观看资源| 日韩美女一区二区三区在线观看| 日本一区二区三区精品视频在线| 黄色av网站一区二区三区| 男人捅开女人的逼国语对白| 亚洲色图偷拍一区二区| 91青青草原免费观看| 手机免费av片在线观看| 亚洲精品一区二区久久| 欧美一区二区三区 中文字幕| 亚洲中文在线视频观看| 国产夫妻自拍刺激视频在线播放 | av日韩免费在线观看| 一区二区三区最新中文字幕| 亚洲av日韩av天堂无码| 131美女爱做视频高清在线| 欧美色综合视频一区二区三区| 绝顶人妻中文字幕精品一区| 中文字幕黄色综合网免费| 懂色av噜噜一区二区| 国产内射一级一片高清视频蘑菇| 香港三日本三韩国三欧美三级| 黄色视频一边摸上面一边插下面| 韩国三级伦理在线观看| 男女男精品视频免费体验| 日产乱码一二三区别免费| 四虎永久在线精品视频观看| 99久久午夜精品一区二区欧美 | 午夜免费福利视频一区| 亚洲卡通动漫精品中文在线观看| 午夜伦理视频免费观看| 色综合人妻中文字幕精品系列 | 色欲天综合久久久无码网中文| 亚洲精品偷拍自综合网| 色哟哟在线观看中文字幕| 亚洲精品国产成人综合免费| 色综合久久久中文字幕波多| 中文字幕亚洲欧美日韩在线不卡| 男人的天堂社区东京热| 91久久精品美女高潮喷白桨| 国产精品亚洲欧美久久| 亚洲韩国强奸理伦中文字| 麻豆成人久久精品二区三区红| 美女又爽又喷奶观看免费| 人妖系列中文字幕欧美系列| 自拍偷拍欧美日韩高清不卡| 日本视频一区二区三区观看| 国内少妇自拍视频专区| 国产综合精品一区二区| 国产成+人+亚洲+综合| 伊人久久综在合线亚洲| 国产精品中文一区二区| 精品人妻伦九区久久69| 日日摸夜夜添夜夜添日韩| 国产精品九色蝌蚪自拍| 精品日韩一区二区三区| av电影日韩在线播放一区二区三区| 国产一区二区三区二区| 国产乱码精品一区二区三区播放 | 亚洲精品不卡一二三区| 久在线观看视频在线观看免费| 精品国产三级国产普通话| 66mio人妻精品一区二区三区| 国自产精品手机在线观看视| 久久久午夜福利免费视频| 在线蜜臀av中文字幕| 国产日韩在线一二三区| 久久久精品欧美中文一区二区三区| 中文字幕婷婷丁香色五月| 无码少妇一级av片在线观看| 国产三级在线观看官网| 日本人疯狂干大鸡巴爽歪歪视频| 国产精品免费av在线播放| 欧美亚洲另类久久综合婷婷| 亚洲香蕉视频综合在线| 精品国产高清中文字幕| 成人免费在线视频日韩| 国产内射一级一片高清视频蘑菇| 女人的天堂av网免费| 美女无套内射粉嫩99内射| 搡女人真人视频不用下载| 亚洲免费视频区一区二| 嗯啊啊大鸡巴快用力肏我视频| 日韩精品少妇专区人妻系列| 久久精品美国亚洲av伦理| 国产蜜臀av在线一区在线| 亚洲同性男男GV在线观看| 18精品久久久无码午夜福利| 漂亮的小蜜桃在线观看| 少妇人妻与黑人精品免费视频| 国产精品无码无不卡在线观看| 97人妻午夜福利视频| 国产亚洲精品成人av一区 | 无情的大屌操骚穴的视频| 插烧女人屁眼视频在线观看| 隔壁人妻bd高清中文字幕| 亚洲中文在线视频观看| 男人的天堂av免费社区| 国产免费成人在线观看视频| 美日韩成人av免费久久| 亚洲欧美国产专区在线观看| 大学生高潮无套内谢免费视频| 五月天丁香花婷婷狠狠热| 国产精品我不卡在线观看| 操小逼流白浆日韩免费小视频| 美女被大鸡巴插男内射欧美| 亚洲另类激情综合偷自拍| 日本人体精品一区二区三区视频| 欧美精品久久久天堂一区| 精品中文字幕一级久久免费 | 女优日本中文字幕五十| 欧洲的大长鸡巴操日本小浪逼| 深夜福利av在线播放| 强奸爆操女白领嫩穴好紧| 国产999精品老熟女唐老鸭 | 亚洲一区二区三区精品久久av| 97精品伊人久久大香| 啊啊啊啊啊啊啊啊操我啊啊啊免费| 国产视频一区二区三区免费看| 国产av人人夜夜澡人人爽软件| 国产真实乱免费高清视频| 男人的天堂一级毛片视频| 操逼激情破处大鸡吧插进| 中国亚洲女人69内射少妇| 97视频精品免费观看| 免费观看又色又爽又黄的| 2022AV亚洲天堂在线观看| 日本高清视频不卡一区二区 | 黄色段片一区二区三区| 亚洲热女乱色一区二区三区| 男人的天堂av免费社区| 97人人视频波多野结衣蜜月| 中文人妻熟妇精品乱又伧老牛在线| 啊啊啊逼逼好痒啊啊视频| 亚洲卡通动漫精品中文在线观看| 看男生和女生插小鸡鸡的软件| 国产熟女一区二区三区四区| 国产精品va在线观看无| 国产在线乱码一区二区三区潮浪| 五月天丁香啪啪激情综合 | 美女裸身被操视频免费观看| 91青青草原免费观看| 国产在线观看一区二区三| 操小逼流白浆日韩免费小视频| 一区二区三区亚洲精品| 国产一区二区三区二区| 最近中文字幕国产精品| 国产蜜臀大码av影院| 日韩午夜三级一区二区| 激情五月亚洲婷婷综合五月天| 大奶女人被操逼操的崩溃| 久久久久久亚洲国产精品一区二区| 丰满女人床上激情久久| 又粗又长鸡巴插进极品美女逼逼里| 日韩欧美亚洲国产精品幕久久久 | 欧美日韩视频在线综合| 高清一区二区中文字幕| 久久人人做人人妻人人玩 | 男人下面插入女生下面啊啊啊视频| 国产精品欧美精品日韩精品| 色眯眯日本道色综合久久| 日本人疯狂干大鸡巴爽歪歪视频| 亚洲国产精品一区二区三区四区| 久久久久久亚洲国产精品一区二区 | 美女主播视频福利一区二区| 亚洲欧美日韩一区二区三区情侣 | 131美女爱做视频高清在线| 精品国精品国产av自在久国产| 欧美精品久久天堂久久精品| 国内少妇人妻精品视频| 亚洲人妻一区二区久久 | 蜜臀av国内精品久久久久久久久| 玖玖资源网站最新网站| 91精品人妻一区二区蜜桃| 亚洲一区二区三区中文| 春色校园激情综合另类| 国产日韩欧美第一区二区| 亚洲韩国强奸理伦中文字| 亚洲综合一区二区三区精品| 人妻中文av无码字幕久久| 黄色av网站一区二区三区| 外国的大鸡巴操美女骚逼| 欧美A极v片亚洲A极v片| 国产一区二区三区三洲| 青青草青娱乐免费在线视频| 神马午夜伦理精品亚洲| 肉棒插小穴视频你懂得分享| 欧美日高清视频在线观看| 亚洲av无码乱码国产精000| 精品国语自产拍在线观看| 亚洲熟女av一区二区三区| 强奷漂亮的护士中文字幕| 国产一区二区四区在线观看视频| 美国女人大兵的大鸡巴操男人的逼 | 日本高清一区二区欧美| 黑皮体育生大屌射精合集| 深夜视频在线观看你懂的| 国产中文字幕日韩精品| 91福利国产在线人成观看 | 91出品视频在线观看| 看蓝色的鸡巴搞进去女人的逼里面 | 老女人黄色性生活高清版| 要肉棒插死骚货黄色视频| 亚洲成人自拍在线视频| 97精品国产自产在线观看永久| 国产亚洲综合一区二区| 亚洲另类激情综合偷自拍| 外国的大鸡巴操美女骚逼| 饥渴少妇高潮露脸嗷嗷叫 | 无码a级毛片免費视频内谢| 青草精品视频在线播放| 人妻视频在线一区二区三区| 人妻久久久一区二区三区视频| 大白屁股精品视频国产| 淫荡女人水嫩嫩逼爆肏视频| 淫荡骚货想让我射进她的骚穴视频 | 男人操女人嗷嗷叫的视频| 蜜桃久久精品一区二区| 一区二区三区在线观看日本| 国产日韩一区二区不卡视频| 男人鸡巴插进女人B里的视频 | 国内老熟妇精品露脸视频| 日本高清中文字幕免费二区| 黄色段片一区二区三区| 91成人亚洲天堂高清| 黑皮体育生大屌射精合集| 国产男女高清视频在线| 精品久久久久久中文字幕网 | 最近日韩精品视频在线| 日韩色视频一区二区三区亚洲| 草草影院黄色在线观看| 亚洲一区二区黄色录像| 丰满少妇被猛烈进入无码蜜桃| 国产成人精品日本亚洲777| 好吊妞一样的免费视频| 国产夫妻自拍刺激视频在线播放| 女同互玩中文字幕久久| 亚洲国产日本韩国福利在线观看| 中国一级做a爰片久久毛片| 亚洲香蕉视频综合在线| 久久精品国产99久久6动漫欧| 风韵丰满熟妇啪啪老熟女| 看日逼的看日逼的看日逼的看日逼 | 国内综合视频一区二区三区 | 国产免费av片在线观看| 精品国产一区二区三区蜜殿最| 在线日韩人妻高清在线| 日韩欧美一级精品久久| 视频一区中文字幕在线观看| 亚洲av无码乱码国产精000| 哺乳一区二区久久久免费| 91国产自拍在线一区| 日日摸夜夜添夜夜添亚洲女人 | 国产精品熟女自拍视频| 在线观国产精品日韩av| 大鸡吧操我纸牌视频啊啊啊| 亚洲国产欧洲综合997| 亚洲理论中文在线观看| 亚洲综合色成人影院| 艳妇臀荡乳欲伦69调教视频| 美女被草视频免费网站| 大学生高潮无套内谢免费视频| 看操小日本女人乱伦逼视频| 大鸡巴插进小骚逼漫画羞羞漫画| 不卡av免费在线网址| 亚洲韩国强奸理伦中文字| 日本成年人大片免费观看| 日本一区二区三区精品视频在线| 国产精品系列在线播放| 亚洲人尤物视频在线观看| 五月婷婷六月丁香激情综合网| 91中文字幕国产精品| 国产精品人妻熟女av| 人妻精品久久一区二区| 欧美成人综合在线观看视频| 又色又爽又黄的视频大全| 亚洲国产免费一区二区| 亚洲一区二区二区久久成人婷婷 | 色婷婷五月综合亚洲大全在线观看| 色偷偷的亚洲男人的天堂| 欧美性生活欧美性生活| 国产偷国产偷亚洲高清| 男生鸡巴操女生逼逼视频。 | 国产精品一区二区亚洲推荐| 日韩免费成人在线视频| 成人国产亚洲欧美日韩| 午夜福利十八周岁成人| 国产精品人妻熟女av | 麻豆成人久久精品二区三区红| 最新av国产在线播放| 看日逼的看日逼的看日逼的看日逼| 久久综合97丁香色香蕉| 国产精品久久久久婷婷五月| 午夜亚洲理论片在线观看| 亚洲伊人情人综合网站| 亚洲天堂自拍偷拍韩日美| 日韩av天堂手机在线观看| 超碰插你激情免费在线| 国产一区二区三区三洲| 午夜福利宅福利国产精品| 精品自拍视频国产免费自拍视频 | 成年人大片在线观看视频| 伊人久久综合大杳蕉中文无码| 亚洲国产免费一区二区| 男人用鸡巴插女人视频下载| 久久精品成人无码观看56| 亚洲中文在线视频观看| 精品一区二区日本视频| 欧美成人动漫免费在线观看| 91免费精品国产拍在线| 裸体女人啊啊啊啊射了好多人啊 | 痴女av一区二区三区| 欧美91精品国产自产在线| 日本漂亮丰满中国人免费看| 亚洲熟女国产午夜精品| 久久久久精品产亚洲av| 无码人妻精品丰满熟妇区| 重磅泄露操鸡吧美女视频| 97精品日韩欧美一区二区三区| 综合激情五月三开心五月| 美女被大鸡巴插男内射欧美| 亚洲一区二区三区中文| 国产一卡在线免费观看| 公侵犯人妻中文字幕一区| 免费无码va一区二区三| 久久久亚洲国产精品一区| 抖阴视频啊啊啊好舒服大鸡吧| 国产二级一片内射视频| 国产无遮挡又黄又爽又大| 亚州欧美大鸡巴操肥逼逼| 美女扒开大腿让男生捅高潮的视频 | 成年免费A级毛片天天看| 超碰人人爽爽人人爽人人 | av日韩免费在线观看| av中文字幕潮喷在线观看| 国产精品国产三级国产av闹| 国产免费人成视频尤物| 九九在线精品亚洲国产涩爱| 韩国成人台湾天堂在线| 久久香蕉免费国产天天看| 97人妻午夜福利视频| 啊我要吃大鸡巴 插到骚逼里好大| 欧美人妻精品一区二区三区99| 久久午夜av一区二区| 中文字幕有码久久高清| 日韩一区二区三区免费视频| 男生鸡巴操女生逼逼视频。| 伊人久久综在合线亚洲| 人妻人人澡人人添人人爽桃色| 好男人视频精品一二三区| 国产男女高清视频在线| 亚洲无线码中文字幕在线| 久久久综合久久久鬼88| 亚洲日本国产乱码va在线观看| 外国的大鸡巴操美女骚逼| 中文字幕中文字幕乱码| 91久久精品一区二区三区色欲| 男生鸡巴操女生逼逼视频。| 少妇又白又紧又爽免费视频| 精品国语自产拍在线观看| 国产无遮挡又爽免费视频| 韩国成人台湾天堂在线| 人妻久久久一区二区三区视频| 日本东京热av在线观看| 无码人妻精品丰满熟妇区| 国产综合亚洲欧美日韩在线| 国产精品污双胞胎在线观看| 无码精品人妻一区人妻斩| 蜜桃久久精品一区二区| 五月婷婷六月丁香激情综合网| 国产精品成人自拍视频| 伊人成人在线高清视频| 社保交够15年可以辞职等退休吗| 99国产欧美久久久精品蜜桃| 探花农村老头操老妇说话对白| 欧美一区二区三区 中文字幕 | 日本人体精品一区二区三区视频| 国产综合色在线视频观看| 成人国产激情自拍视频| 情产国品久久久久久久9999 | 性刺激特黄毛片免费视频 | 爽爽午夜福利视频一区二区| 91出品视频在线观看| 男人添嫩p视频在线观看| 国产精品超碰在线97| 高跟翘臀后进式视频在线观看| 国产999精品老熟女唐老鸭| 亚洲一区二区av高清| 999国产精品永久免费视频| 天堂av一二三区在线播放| 免费观看拍1000线观看| 国产视频一区二区三区免费看| 99热这里全部都是精品| 欧美亚洲精品激情视频网|